Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method

普鲁士蓝 共沉淀 阴极 电化学 材料科学 空位缺陷 离子 晶体结构 化学工程 电极 无机化学 化学 结晶学 冶金 物理化学 有机化学 工程类
作者
Xinyu Dong,Haifeng Wang,Jiawei Wang,Qian Wang,Hao Wang,Wenhao Hao,Fanghai Lu
出处
期刊:Molecules [MDPI AG]
卷期号:28 (21): 7267-7267 被引量:5
标识
DOI:10.3390/molecules28217267
摘要

Sodium-ion batteries have important application prospects in large-scale energy storage due to their advantages, such as safety, affordability, and abundant resources. Prussian blue analogs (PBAs) have a stable and open framework structure, making them a very promising cathode material. However, high-performance manganese-based Prussian blue cathode materials for sodium-ion batteries still suffer from significant challenges due to several key issues, such as a high number of vacancy defects and a high crystal water content. This article investigates the effects of the Fe-Mn molar ratio, Mn ion concentration, and reaction time on the electrochemical performance of MnHCF during the coprecipitation process. When Fe:Mn = 1:2, c(Mn2+) = 0.02 mol/L, and the reaction time is 12 h, the content of interstitial water molecules in the sample is low, and the Fe(CN)6 defects are few. At 0.1 C, the prepared electrode has a high initial discharge specific capacity (121.9 mAh g−1), and after 100 cycles at 0.2 C, the capacity retention rate is 65% (~76.2 mAh g−1). Meanwhile, the sample electrode exhibits excellent reversibility. The discharge capacity can still be maintained at around 75% when the magnification is restored from 5 C to 0.1 C. The improvement in performance is mainly attributed to two aspects: On the one hand, reducing the Fe(CN)6 defects and crystal water content is conducive to the diffusion and stable structure of N. On the other hand, reducing the reaction rate can significantly delay the crystallization of materials and optimize the nucleation process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
Sera完成签到,获得积分10
4秒前
Denmark发布了新的文献求助10
5秒前
5秒前
gxt完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
郭耀锐发布了新的文献求助10
8秒前
小王小王完成签到,获得积分10
8秒前
彭于晏应助vv采纳,获得10
9秒前
10秒前
10秒前
Hello应助感性的天蓉采纳,获得10
11秒前
11秒前
学术乞丐完成签到,获得积分10
12秒前
13秒前
那西西发布了新的文献求助10
13秒前
qiqi完成签到,获得积分10
15秒前
16秒前
16秒前
leclerc完成签到,获得积分10
16秒前
16秒前
xiaoz发布了新的文献求助10
16秒前
你能行发布了新的文献求助30
17秒前
李爱国应助argal采纳,获得10
17秒前
gudujian870928完成签到,获得积分10
17秒前
19秒前
杜青发布了新的文献求助10
20秒前
shutup发布了新的文献求助10
20秒前
22秒前
Lotus发布了新的文献求助50
22秒前
cnyyp完成签到,获得积分10
22秒前
正直的沛凝发布了新的文献求助100
23秒前
23秒前
森山完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790