生物
拟南芥
转基因水稻
转基因
异源表达
镉
基因表达
异源的
基因
开枪
细胞生物学
植物
转基因作物
分子生物学
遗传学
重组DNA
突变体
冶金
材料科学
作者
Nan Jiang,Yang Shi,Mingyu Li,Zhiye Du,Ji Chen,Wenjun Jiang,Yanyan Huang,Min Zhong,Ju Yang,Binhua Hu,Jin Huang
标识
DOI:10.1186/s12870-023-04540-0
摘要
As one of the major food crops in the world, rice is vulnerable to cadmium (Cd) pollution. Understanding of the molecular mechanisms of Cd uptake, transport and detoxification in rice is essential for the breeding of low-Cd rice. However, the molecular mechanisms underlying the response of rice to Cd stress remains to be further clarified.In this study, a novel Cd-responsive gene OsHARBI1-1 was identified in the rice genome and its expression pattern and function were characterized. Bioinformatics analysis showed that the promoter region of OsHARBI1-1 had multiple cis-acting elements in response to phytohormones and stress, and the expression of OsHARBI1-1 was induced by phytohormones. OsHARBI1-1 protein was targeted to the nucleus. qRT-PCR analysis results showed that the expression of OsHARBI1-1 in the roots was repressed while the expression in the shoots was increased under Cd stress. Heterologous expression of OsHARBI1-1 in yeast conferred tolerance to Cd and reduced Cd content in the cells. Meanwhile, the expression of OsHARBI1-1 in Arabidopsis thaliana (A. thaliana) enhanced the tolerance of A. thaliana to Cd stress. In addition, compared with the wild type plants, the POD activity of transgenic plants was increased, while the SOD and CAT activities were decreased. Interestingly, the accumulation of Cd in the roots of A. thaliana expressing OsHARBI1-1 was significantly increased, whereas the Cd accumulation in the shoots was slightly decreased. Compared to the WT plants, the expression of genes related to Cd absorption and chelation was upregulated in transgenic A. thaliana under Cd stress, while the expression of genes responsible for the translocation of Cd from the roots to the shoots was downregulated. Moreover, the expression of phytohormone-related genes was significantly influenced by the expression of OsHARBI1-1 with and without Cd treatment.Findings of this study suggest that OsHARBI1-1 might play a role in the response of plants to Cd response by affecting antioxidant enzyme activities, Cd chelation, absorption and transport, and phytohormone homeostasis and signaling.
科研通智能强力驱动
Strongly Powered by AbleSci AI