A literature review of fault diagnosis based on ensemble learning

计算机科学 集成学习 机器学习 人工智能 领域(数学) 断层(地质) Boosting(机器学习) 一般化 数学分析 数学 地震学 纯数学 地质学
作者
Zhibao Mian,Xiaofei Deng,Xiaohui Dong,Yuzhu Tian,Tianya Cao,Kairan Chen,Tareq Al Jaber
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107357-107357 被引量:24
标识
DOI:10.1016/j.engappai.2023.107357
摘要

The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助小郭采纳,获得10
2秒前
2秒前
华仔应助ww采纳,获得10
3秒前
3秒前
11发布了新的文献求助10
3秒前
mou完成签到,获得积分20
4秒前
Nowind发布了新的文献求助10
5秒前
浅尝离白应助DUANG-Jerry采纳,获得30
6秒前
orixero应助优雅灵波采纳,获得50
6秒前
6秒前
海绵宝宝查文献完成签到,获得积分10
6秒前
mou发布了新的文献求助10
6秒前
步步完成签到 ,获得积分10
6秒前
6秒前
7秒前
coolkid发布了新的文献求助10
8秒前
活泼红牛发布了新的文献求助10
9秒前
10秒前
Alina1874完成签到,获得积分10
10秒前
11秒前
orixero应助大脑袋媛媛采纳,获得10
11秒前
12秒前
12秒前
ww完成签到,获得积分10
12秒前
yuke完成签到,获得积分20
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
栗子应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
李健应助科研通管家采纳,获得10
14秒前
浅尝离白应助zshhay采纳,获得10
14秒前
15秒前
15秒前
Pana发布了新的文献求助10
15秒前
Joker发布了新的文献求助10
16秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291