Evaluating the seasonal effects of building form and street view indicators on street-level land surface temperature using random forest regression

环境科学 多重共线性 地理 回归分析 自然地理学 气象学 大气科学 统计 数学 地质学
作者
Keyan Chen,Meng Tian,Jianfeng Zhang,Xuesong Xu,Lei Yuan
出处
期刊:Building and Environment [Elsevier]
卷期号:245: 110884-110884 被引量:4
标识
DOI:10.1016/j.buildenv.2023.110884
摘要

Current studies of the influence of urban morphology indicators on land surface temperature (LST) usually focus on administrative or grid-based research units, and the limited inclusion of similar indicators easily occurs due to multicollinearity. This study implements Random Forest (RF) models with multi-source data, to study the relative importance and marginal effects of eight building form indicators as well as six street view indicators on street-level LST across all four seasons for Shenzhen, China. Our results show that the RF models explained 79.56%, 79.07%, 76.42%, and 64.74% of the LST variations in the spring, summer, autumn and winter, respectively. The building view factor (BVF) and green view index (GVI) were identified as the two most important indicators across all seasons. However, BVF was the dominant indicator in the spring and summer, and GVI played more significant roles in the autumn and winter. The relative importance of building density (BD), average building height (BH), standard deviation of building height (BH_SD) and sky view factor (SVF) showed noticeable variations with the seasons as well. The trends of marginal effects remained stable for each indicator across the four seasons. BVF, BD and SVF had warming effects in each season, while GVI, BH and BH_SD had cooling effects in each season. These findings contribute to our understanding of the relationship between urban morphology indicators and LST and provide valuable design suggestions for improving urban thermal environment, especially in high-density cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后陡门的夏天完成签到 ,获得积分10
2秒前
2秒前
胡胡发布了新的文献求助10
6秒前
一树春风完成签到,获得积分20
6秒前
zwj发布了新的文献求助10
6秒前
圆圈应助可爱以冬采纳,获得10
7秒前
NexusExplorer应助可爱以冬采纳,获得10
7秒前
建成发布了新的文献求助10
7秒前
10秒前
东方既白应助KYRIAL采纳,获得10
11秒前
16秒前
aniver完成签到 ,获得积分10
16秒前
仲夜安发布了新的文献求助10
16秒前
情怀应助一树春风采纳,获得10
20秒前
yujinglu发布了新的文献求助10
21秒前
HIT_WXY完成签到,获得积分10
21秒前
东方既白应助KYRIAL采纳,获得10
21秒前
美丽易云发布了新的文献求助10
23秒前
长情寒凝完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
25秒前
汉堡包应助老伯unit采纳,获得10
27秒前
Charlie完成签到 ,获得积分10
27秒前
28秒前
奥里给完成签到 ,获得积分10
28秒前
wanci应助朴实的百招采纳,获得10
29秒前
31秒前
萧水白应助KYRIAL采纳,获得10
32秒前
czl12138发布了新的文献求助10
33秒前
33秒前
35秒前
35秒前
35秒前
kyk完成签到,获得积分10
35秒前
正直涔完成签到 ,获得积分10
35秒前
独特煎蛋完成签到,获得积分10
36秒前
幽默尔蓉发布了新的文献求助10
36秒前
无花果应助子车半烟采纳,获得10
37秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142187
求助须知:如何正确求助?哪些是违规求助? 2793134
关于积分的说明 7805663
捐赠科研通 2449433
什么是DOI,文献DOI怎么找? 1303289
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291