作者
Shaohua Li,Chi Luo,Fan Yan,Yue Yang,Bin Guo,Lu Wang,Shaoquan Xu,Feng Wu,Puhui Ji
摘要
The pollution of water bodies by heavy metals (HMs) such as Pb(II) and Cd(II) poses a serious environmental risk. Herein, rice straw biochar (RBC) modified with calcium thioglycolate was used to remove Pb(II) and Cd(II) from aqueous solutions. The adsorption performance of the modified biochar was investigated via adsorption kinetics and isotherm model fitting. Furthermore, scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to elucidate the modification and adsorption mechanisms. The results showed that the modification process loaded sulfur-containing functional groups, calcium carbonate, and calcium oxalate crystals on the biochar surface, considerably enhancing its complexation performance and ion-exchange capacity. The equilibrium adsorption amounts for Pb(II) and Cd(II) reached 124.92 and 65.44 mg g-1 in unary systems, respectively; they reached 121.34 and 39.43 mg g-1 in a binary Pb(II) and Cd(II), respectively. Moreover, the optimal adsorption conditions were as follows: pH = 6, temperature = 25 °C, dosage = 0.8 g L-1, and contact time = 2 h. In the binary Pb(II) and Cd(II) system, the adsorption process obeyed the Langmuir competitive adsorption model, which means that one adsorption site on the modified biochar was effective for only one heavy-metal ion, and the modified biochar was more selective for Pb(II) than for Cd(II). The adsorption mechanism, which was dominated by chemisorption, mainly involved complexation, precipitation, ion exchange, and cation-π interactions. Meanwhile, adsorption and desorption experiments indicated that the modified biochar exhibited satisfactory recycling performance, demonstrating its feasibility as an inexpensive and efficient heavy-metal adsorbent for polluted water.