Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach

火车 地铁列车时刻表 计算机科学 随机规划 持续时间(音乐) 运筹学 数学优化 北京 集合(抽象数据类型) 分解 水准点(测量) 工程类 数学 中国 程序设计语言 法学 地理 文学类 艺术 大地测量学 操作系统 生物 地图学 生态学 政治学
作者
Hangyu Ji,Rui Wang,Chuntian Zhang,Jiateng Yin,Lin Ma,Lixing Yang
出处
期刊:Omega [Elsevier BV]
卷期号:124: 102999-102999 被引量:4
标识
DOI:10.1016/j.omega.2023.102999
摘要

In high-speed railways, unexpected disturbances on maintenance activities may cause serious delays of the scheduled trains and greatly affect the service quality for traveling passengers. In contrast to most existing studies that focused on deterministic maintenance activities, this paper develops a two-stage stochastic programming approach to address the optimization of train schedules under uncertain maintenance plans. Specifically, in the first stage, we aim to determine the departure times of trains from the origin station, since this information needs to be public to passengers in advanced. The objective function is to minimize the expected travel time of trains under uncertain duration time of maintenance activities. In the second stage, given the specific information of maintenance activities, we generate the train schedule by adjusting the stop patterns, train orders and the assignment of tracks at key stations. Due to the computational difficulties arising from the large number of discrete decision variables, we particularly develop a dual decomposition based solution approach to solve the two-stage stochastic model. Our approach decomposes the original problem into a set of scenario-dependent subproblems with much fewer number of variables, which greatly improves the computational efficiency. Finally, we conduct several sets of real-world instances based on the Beijing–Guangzhou high-speed railway corridor to verify the effectiveness of the proposed model and solution approach. The results demonstrate that our approach evidently outperforms state-of-art solvers (Gurobi), especially for large-scale instances that Gurobi cannot even return feasible solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五更夜发布了新的文献求助10
刚刚
点点完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
彩色的尔白完成签到,获得积分20
2秒前
科研通AI6应助洁净的诗珊采纳,获得10
2秒前
华山小将发布了新的文献求助30
2秒前
小猪发布了新的文献求助10
2秒前
乐乐应助科研老白采纳,获得10
3秒前
Agoni完成签到 ,获得积分10
3秒前
汉堡包应助高贵的老太采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
不孤独的发卡完成签到,获得积分10
4秒前
wendy.lv完成签到,获得积分10
5秒前
传奇3应助微眠采纳,获得10
5秒前
5秒前
斑马兽发布了新的文献求助10
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
烟花应助斯文墨镜采纳,获得10
6秒前
keyanqianjin发布了新的文献求助10
6秒前
小马甲应助爱喝冰可乐采纳,获得10
7秒前
yscygsy发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
wait完成签到,获得积分10
9秒前
9秒前
9秒前
12秒前
西门不二发布了新的文献求助10
12秒前
wuxidixi完成签到 ,获得积分10
12秒前
失眠的契完成签到,获得积分10
13秒前
浮游应助燕天与采纳,获得10
14秒前
奥特曼发布了新的文献求助200
14秒前
Akim应助郭嘉仪采纳,获得10
14秒前
华仔应助yulong采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016604
求助须知:如何正确求助?哪些是违规求助? 4256659
关于积分的说明 13265528
捐赠科研通 4060614
什么是DOI,文献DOI怎么找? 2220941
邀请新用户注册赠送积分活动 1230246
关于科研通互助平台的介绍 1152831