Optimization of train schedule with uncertain maintenance plans in high-speed railways: A stochastic programming approach

火车 地铁列车时刻表 计算机科学 随机规划 持续时间(音乐) 运筹学 数学优化 北京 集合(抽象数据类型) 分解 水准点(测量) 工程类 数学 中国 程序设计语言 法学 地理 文学类 艺术 大地测量学 操作系统 生物 地图学 生态学 政治学
作者
Hangyu Ji,Rui Wang,Chuntian Zhang,Jiateng Yin,Lin Ma,Lixing Yang
出处
期刊:Omega [Elsevier BV]
卷期号:124: 102999-102999 被引量:4
标识
DOI:10.1016/j.omega.2023.102999
摘要

In high-speed railways, unexpected disturbances on maintenance activities may cause serious delays of the scheduled trains and greatly affect the service quality for traveling passengers. In contrast to most existing studies that focused on deterministic maintenance activities, this paper develops a two-stage stochastic programming approach to address the optimization of train schedules under uncertain maintenance plans. Specifically, in the first stage, we aim to determine the departure times of trains from the origin station, since this information needs to be public to passengers in advanced. The objective function is to minimize the expected travel time of trains under uncertain duration time of maintenance activities. In the second stage, given the specific information of maintenance activities, we generate the train schedule by adjusting the stop patterns, train orders and the assignment of tracks at key stations. Due to the computational difficulties arising from the large number of discrete decision variables, we particularly develop a dual decomposition based solution approach to solve the two-stage stochastic model. Our approach decomposes the original problem into a set of scenario-dependent subproblems with much fewer number of variables, which greatly improves the computational efficiency. Finally, we conduct several sets of real-world instances based on the Beijing–Guangzhou high-speed railway corridor to verify the effectiveness of the proposed model and solution approach. The results demonstrate that our approach evidently outperforms state-of-art solvers (Gurobi), especially for large-scale instances that Gurobi cannot even return feasible solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知许解夏应助呆萌朝雪采纳,获得10
刚刚
望北楼主发布了新的文献求助10
刚刚
刚刚
小雨点发布了新的文献求助10
刚刚
阳光的安南完成签到,获得积分10
刚刚
1秒前
JamesPei应助孤独梦安采纳,获得10
1秒前
小白完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
壮观复天完成签到 ,获得积分10
1秒前
曹馨月关注了科研通微信公众号
2秒前
2秒前
研友_8Y26PL完成签到,获得积分10
2秒前
dong应助钙离子采纳,获得10
2秒前
强健的梦蕊完成签到 ,获得积分10
3秒前
3秒前
22发布了新的文献求助10
3秒前
4秒前
乐观寻雪完成签到 ,获得积分10
5秒前
bai完成签到,获得积分10
5秒前
是哇哦完成签到,获得积分10
5秒前
1234发布了新的文献求助10
6秒前
C5b6789n发布了新的文献求助10
7秒前
麦乐迪应助科研通管家采纳,获得10
7秒前
yookia应助科研通管家采纳,获得10
7秒前
小白发布了新的文献求助10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255