奥恩斯坦-乌伦贝克过程
统计物理学
消光(光学矿物学)
平稳分布
数学
应用数学
李雅普诺夫函数
细胞溶解
随机过程
动力学(音乐)
概率密度函数
物理
统计
生物
量子力学
生物化学
光学
细胞毒性T细胞
非线性系统
马尔可夫链
体外
声学
作者
Cheng Han,Yan Wang,Daqing Jiang
标识
DOI:10.1016/j.chaos.2023.113930
摘要
In this paper, we introduce an HIV infection model with virus-to-cell infection, cell-to-cell infection and non-cytolytic cure. Two mean-reverting Ornstein–Uhlenbeck processes are also taken into account in the model. Firstly, it is proved that the stochastic model has a unique positive global solution. The model is found to have at least one stationary distribution by constructing suitable Lyapunov functions if the critical condition R0s>1. Then, the probability density function near the quasi-positive equilibrium is obtained by solving the corresponding Fokker–Planck equation. The spectral radius method is used to derive the virus extinction under a sufficient condition R0e<1. Finally, some numerical simulations are carried out.
科研通智能强力驱动
Strongly Powered by AbleSci AI