清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Sentiment Analysis in E-Commerce Platforms: A Review of Current Techniques and Future Directions

情绪分析 计算机科学 数据科学 领域(数学) 人工智能 讽刺 深度学习 信息抽取 市场调研 机器学习 讽刺 艺术 数学 文学类 营销 纯数学 业务
作者
Huang Huang,Adeleh Asemi,Mumtaz Begum Mustafa
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 90367-90382 被引量:24
标识
DOI:10.1109/access.2023.3307308
摘要

Sentiment analysis (SA), also referred to as opinion mining, has become a widely used real-world application of Natural Language Processing in recent times. Its main goal is to identify the hidden emotions behind the plain text. SA is especially useful in e-commerce fields, where comments and reviews often contain a wealth of valuable business information that has great research value. The objective of this study is to examine the techniques used for SA in current e-commerce platforms as well as the future directions for SA in e-commerce. After examining the existing systematic review papers, it was found that there is a lack of a single comprehensive review paper that addresses research questions. The findings of this study can provide researchers in the field of SA with a comprehensive understanding of the current techniques and platforms utilized, as well as provide insights into the future directions. Through the utilization of specific keywords, we have identified 271 papers and have chosen 54 experimental papers for review. Among these, 26 papers (representing 48.%) have exclusively employed machine Learning techniques, while 24 (44.%) have looked into addressing SA through deep learning techniques, and 4 (7.%) have employed a hybrid approach using both machine learning and deep learning techniques. Additionally, our review revealed that Amazon and Twitter emerged as the two most favored data sources among researchers. Looking ahead, promising research avenues to include the development of more universal language models, aspect-based SA, implicit aspect recognition and extraction, sarcasm detection, and fine-grained sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
30秒前
32秒前
百里幻竹发布了新的文献求助10
37秒前
42秒前
打打应助百里幻竹采纳,获得10
44秒前
59秒前
百里幻竹发布了新的文献求助10
1分钟前
暴躁的老哥完成签到,获得积分10
1分钟前
慕青应助百里幻竹采纳,获得10
1分钟前
1分钟前
金钰贝儿完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
Orange应助百里幻竹采纳,获得10
2分钟前
wxyinhefeng完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
3分钟前
3分钟前
一味地丶逞强完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
小二郎应助小兄弟采纳,获得30
5分钟前
小马甲应助百里幻竹采纳,获得10
5分钟前
5分钟前
小兄弟完成签到,获得积分20
5分钟前
小兄弟发布了新的文献求助30
5分钟前
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887