认知无线电
计算机科学
服务质量
资源配置
方案(数学)
干扰(通信)
资源管理(计算)
计算机网络
人工神经网络
无线电资源管理
认知网络
资源(消歧)
光谱效率
计算
分布式计算
人工智能
无线
电信
无线网络
算法
频道(广播)
数学分析
数学
作者
Yang Yu,Yinchao Ge,Jiangcheng Zhang,Qi Fang
标识
DOI:10.1109/eei59236.2023.10212587
摘要
Cognitive radio technology allows secondary users (SUs) to opportunistically access licensed spectrum to improve the spectral efficiency of communication systems. In this paper, by utilizing deep neural networks (DNNs), we study the resource allocation of the SUs in cognitive radio networks (CRN) and propose a scheme based on unsupervised learning to maximize the sum rate of the SUs. The proposed scheme ensures that the interference caused to primary users (PUs) does not exceed a predefined threshold. We also discuss the quality of service (QoS) requirements of the SUs. The numerical simulation results show that the proposed scheme achieves a higher sum rate with low computation time.
科研通智能强力驱动
Strongly Powered by AbleSci AI