计算机科学
强化学习
趋同(经济学)
人工智能
光学(聚焦)
功能(生物学)
机制(生物学)
任务(项目管理)
简单(哲学)
网格
机器学习
数学
工程类
认识论
光学
物理
哲学
生物
经济
进化生物学
系统工程
经济增长
几何学
作者
Shaokang Dong,Hangyu Mao,Shuyuan Yang,Shengyu Zhu,Wenbin Li,Jianye Hao,Yang Gao
出处
期刊:IEEE transactions on cybernetics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-13
标识
DOI:10.1109/tcyb.2023.3328732
摘要
Existing multiagent exploration works focus on how to explore in the fully cooperative task, which is insufficient in the environment with nonstationarity induced by agent interactions. To tackle this issue, we propose When to Explore (WToE), a simple yet effective variational exploration method to learn WToE under nonstationary environments. WToE employs an interaction-oriented adaptive exploration mechanism to adapt to environmental changes. We first propose a novel graphical model that uses a latent random variable to model the step-level environmental change resulting from interaction effects. Leveraging this graphical model, we employ the supervised variational auto-encoder (VAE) framework to derive a short-term inferred policy from historical trajectories to deal with the nonstationarity. Finally, agents engage in exploration when the short-term inferred policy diverges from the current actor policy. The proposed approach theoretically guarantees the convergence of the Q -value function. In our experiments, we validate our exploration mechanism in grid examples, multiagent particle environments and the battle game of MAgent environments. The results demonstrate the superiority of WToE over multiple baselines and existing exploration methods, such as MAEXQ, NoisyNets, EITI, and PR2.
科研通智能强力驱动
Strongly Powered by AbleSci AI