Data-driven Bayesian network approach to maritime accidents involved by dry bulk carriers in Turkish search and rescue areas

吨位 土耳其 贝叶斯网络 事故(哲学) 搜救 环境科学 地理 计算机科学 统计 历史 数学 认识论 哲学 人工智能 古代史 机器人 语言学
作者
Burhan Kayıran,Devran YAZIR,Bayram Aslan
出处
期刊:Regional Studies in Marine Science [Elsevier]
卷期号:67: 103193-103193 被引量:3
标识
DOI:10.1016/j.rsma.2023.103193
摘要

In the case of maritime accidents, they cause very serious vital, economic, and environmental problems. As a matter of fact, maritime accidents emerge as an important issue due to the risks brought by the increasing ship tonnage and ship traffic. In this sense, the Turkish Search and Rescue Areas, which include the Aegean Sea islands, the Turkish coasts, and the Turkish Straits, are among the regions with risks in maritime accidents. In this study, the accidents that took place between the years 2001–2019 in the Turkish Search and Rescue Areas were examined, and maritime accident analysis was carried out using Bayesian networks on the accidents involving dry-bulk carriers. Considering accident type as a target variable, this study concentrates on the probabilistic relationships among the factors (i.e., ship type, grt, flag, survival status, navigation region, accident month, accident time, and accident causes) which are thought to influence the occurrence of accidents. According to the research outcomes, it has been determined as probabilistic that there are seasonal and regional differences in the occurrence of accident causes and the occurrence of accidents. In dry bulk carriers, it has been determined that the white flag ships in the Paris Mou ranking are much less likely to be involved in a fatal accident at night. In addition, while the probability of fatal maritime accidents occurring during the daylight hours (06:00–17:59) in accidents in the Çanakkale navigational area is 28%; at night (18:00–05:59), this rate is 41%. Another important matter is that some ships have been found to be involved in accidents repeatedly. In this sense, suggestions have been made for the stakeholders.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小达人完成签到 ,获得积分10
刚刚
1秒前
QDMENG完成签到,获得积分10
1秒前
tzt完成签到,获得积分10
1秒前
1秒前
8R60d8应助qd采纳,获得10
2秒前
頔頔哒哒完成签到,获得积分10
4秒前
孤独安珊完成签到,获得积分10
5秒前
QDMENG发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
科研通AI2S应助起风了采纳,获得10
9秒前
一块巧克力完成签到,获得积分10
13秒前
13秒前
所所应助坚强怀绿采纳,获得10
15秒前
16秒前
xinyy应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
18秒前
18秒前
airsh发布了新的文献求助10
18秒前
自然浩阑发布了新的文献求助10
19秒前
美少女完成签到,获得积分10
22秒前
23秒前
华仔应助小学猹采纳,获得10
25秒前
研友_VZG7GZ应助小梁要加油采纳,获得10
28秒前
30秒前
爆米花应助啦啦采纳,获得10
31秒前
华仔应助美少女采纳,获得10
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809520
关于积分的说明 7882540
捐赠科研通 2468075
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943