Diagnosing dry-eye: Which tests are most accurate?

眼科 试验前后概率 医学 考试(生物学) 贝叶斯定理 数学 统计 内科学 生物 贝叶斯概率 古生物学
作者
Eric Papas
出处
期刊:Contact Lens and Anterior Eye [Elsevier]
卷期号:46 (5): 102048-102048 被引量:8
标识
DOI:10.1016/j.clae.2023.102048
摘要

To demonstrate how the likelihood of making a correct diagnosis of dry eye disease varies according to the clinical test methods used.The probability of a person having dry eye, given that they return a positive test, was calculated for a range of standard tests, using the Bayes-Price rule. Global specificity and sensitivity values for each test were estimated by employing the Beta distribution to combine all relevant data obtained from a literature review.At an assumed prevalence of 11.6%, the single test with the highest probability of a correct diagnosis was corneal staining (probability = 0.28) and the lowest was the ocular surface disease index - OSDI (0.14). The best combination of symptoms with a single test of tear film homeostasis was the 5-item dry eye questionnaire (DEQ-5) + corneal staining (0.42) while OSDI + tear film break up time (TBUT) was the worst (0.23). The simultaneous observation of conjunctival and corneal staining was associated with a probability of 0.49. The probability of a correct diagnosis increased with the number of positive tests, up to a maximum of 0.90 when all of DEQ-5, conjunctival and corneal staining, osmolarity and TBUT were positive.A significant risk of misdiagnosis is associated with using any single test for dry eye disease, or the minimum TFOS DEWS II criterion of symptoms plus any single test of tear film homeostasis. To minimize this risk, the maximum number of tests available should be performed and the results used to inform diagnosis. The simultaneous occurrence of conjunctival and corneal staining should be considered a key outcome and be specified in future guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rachel发布了新的文献求助10
刚刚
1秒前
2秒前
淡泊宁静完成签到,获得积分10
4秒前
4秒前
JackWang618完成签到,获得积分10
6秒前
celery发布了新的文献求助10
7秒前
qi发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
白菜发布了新的文献求助100
8秒前
cxy完成签到,获得积分10
11秒前
11秒前
wyq完成签到 ,获得积分10
12秒前
JJ发布了新的文献求助10
12秒前
雷乾发布了新的文献求助10
13秒前
keyansci123完成签到,获得积分10
13秒前
fffffffq完成签到,获得积分10
13秒前
13秒前
Akim应助云缘之芒采纳,获得10
14秒前
15秒前
16秒前
caffeine发布了新的文献求助10
16秒前
调皮时光发布了新的文献求助10
16秒前
Hello应助tsss采纳,获得10
17秒前
聪明宛完成签到 ,获得积分10
18秒前
诚心菠萝发布了新的文献求助10
19秒前
自信的劳尔完成签到,获得积分10
19秒前
hi发布了新的文献求助10
19秒前
喜悦一曲发布了新的文献求助10
19秒前
20秒前
完美世界应助lss采纳,获得10
25秒前
wanci应助hi采纳,获得10
25秒前
Calvin-funsom发布了新的文献求助10
26秒前
云缘之芒完成签到,获得积分10
30秒前
30秒前
30秒前
嗯哼应助仙林AK47采纳,获得40
31秒前
31秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216712
求助须知:如何正确求助?哪些是违规求助? 2865932
关于积分的说明 8149628
捐赠科研通 2532410
什么是DOI,文献DOI怎么找? 1365747
科研通“疑难数据库(出版商)”最低求助积分说明 644620
邀请新用户注册赠送积分活动 617526