A Concise and Accurate Method for Evaluating Alveolar Cleft ReconstructionDiet al Concise and Accurate Method for Evaluating

医学 口腔正畸科
作者
Wenjun Di,Kongying Li,Mengmeng Zhang,Tao Song,Ningbei Yin,Yongqian Wang
出处
期刊:Journal of Craniofacial Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:35 (6): 1677-1681
标识
DOI:10.1097/scs.0000000000010117
摘要

Currently, there remain unresolved issues in the treatment of alveolar clefts, the resolution of which could greatly benefit many patients with cleft lip and palate. In alveolar cleft treatment research, a reliable tool for pre- and postoperative assessment is crucial. This study presents a concise and accurate method for postoperative evaluations of alveolar treatment, which can rapidly and accurately obtain the shape and volume of the newly formed bone. This study included helical computed tomography (CT) datasets of 20 patients who underwent alveolar bone grafting at our institute. Two observers independently measured the volume of newly formed bone in the patient’s CT images one year postoperatively, with each observer performing the measurement twice. To acquire the volume of the newly formed bone at 1 year postoperatively, the model of the newly formed bone must be constructed first. The acquisition of this model involves Boolean operations on registered preoperative and postoperative cranial 3-dimensional (3D) images. The registration of the preoperative and postoperative models is performed in MIMICS software, and the registration results can be directly confirmed layer by layer on the CT images to ensure accuracy. The mean newly formed bone ratio in this study was 39.81%±17.96%, and the mean processing time was 05:11±01:41 minutes. The intraclass correlation coefficient for bone volume measurements between the two observers was 0.999, indicating high consistency and reproducibility. This method enhances accuracy, is time-efficient, and demonstrates high reliability in evaluating postoperative bone formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
御觞丶完成签到,获得积分10
刚刚
今后应助zhui采纳,获得10
1秒前
1秒前
SciGPT应助雾蓝采纳,获得10
1秒前
lulu828完成签到,获得积分10
2秒前
2秒前
科研闲人完成签到,获得积分10
3秒前
内向秋寒发布了新的文献求助10
3秒前
3秒前
黑色兔子完成签到 ,获得积分10
3秒前
4秒前
四小时充足睡眠完成签到,获得积分10
5秒前
zhang0403完成签到,获得积分10
5秒前
欢喜的毛豆完成签到 ,获得积分10
6秒前
华仔应助Eddy采纳,获得10
6秒前
小王发布了新的文献求助10
6秒前
通~发布了新的文献求助10
7秒前
MES发布了新的文献求助10
7秒前
赘婿应助jennifercui采纳,获得10
7秒前
7秒前
8秒前
8秒前
Nifeng完成签到,获得积分10
8秒前
爱听歌的依秋完成签到,获得积分10
8秒前
ufuon发布了新的文献求助10
8秒前
追寻的山晴完成签到,获得积分10
9秒前
9秒前
汉堡包应助otaro采纳,获得10
9秒前
思源应助xfxx采纳,获得10
9秒前
9秒前
铁锤xy完成签到,获得积分10
10秒前
11秒前
11秒前
善学以致用应助qinqin采纳,获得10
12秒前
12秒前
想要礼物的艾斯米拉达完成签到,获得积分10
13秒前
内向秋寒完成签到,获得积分10
13秒前
Alicia完成签到 ,获得积分10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794