蚜虫
桃蚜
生物
转录组
代谢组
蚜虫科
植物
侵染
韧皮部
园艺
基因表达
代谢物
基因
同翅目
遗传学
有害生物分析
生物化学
作者
Lei Pan,Rui Huang,Zhenhua Lu,Wenyi Duan,Shihang Sun,Lele Yan,Guochao Cui,Liang Niu,Zhiqiang Wang,Wenfang Zeng
摘要
Abstract The defense response of peach (Prunus persica) to insect attack involves changes in gene expression and metabolites. Piercing/sucking insects such as green peach aphid cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to green peach aphid (GPA, Myzus persicae) were studied. The transcriptome analysis of infected peach leaves showed two different response patterns. The gene expression of aphid-susceptible peach plants infected by aphids was more similar to that of the control plants, while the gene expression of aphid-resistant peach plants infected by aphids showed strongly induced changes in gene expression compared with the response in the control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were more strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid treatment induced larger changes in aphid-resistant peaches than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed extremely significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid- susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, NACs, etc.) were more strongly induced upon GPA infestation in aphid-resistant peaches but not in aphid-susceptible peaches. Aphid feeding-dependent transcriptome and metabolite profiles provide the foundation for understanding the molecular mechanisms underlying the response of peach to aphid infestation. These results suggested that accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI