Optimization of classification model for electric vehicle charging station placement using dynamic graylag goose algorithm

算法 电动汽车 优化算法 计算机科学 数学优化 数学 物理 生物 生态学 功率(物理) 量子力学
作者
Amel Ali Alhussan,Doaa Sami Khafaga,El-Sayed M. El-kenawy,Marwa M. Eid,Abdelhameed Ibrahim‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fenrg.2024.1391085
摘要

The study of electric vehicles (EVs) aims to address the critical challenges of promoting widespread adoption. These challenges include EVs’ high upfront costs compared to conventional vehicles, the need for more sufficient charging stations, limitations in battery technology and charging speeds, and concerns about the distance EVs can travel on a single charge. This paper is dedicated to designing an innovative strategy to handle EV charging station arrangement issues in different cities. Our research will support the development of sustainable transportation by intelligently replying to the challenges related to short ranges and long recharging times through the distribution of fast and ultra-fast charge terminals by allocating demand to charging stations while considering the cost variable of traffic congestion. A hybrid combination of Dynamic Greylag Goose Optimization (DGGO) algorithm, as well as a Long Short-Term Memory (LSTM) model, is employed in this approach to determine, in a cost-sensitive way, the location of the parking lots, factoring in the congestion for traffic as a variable. This study examines in detail the experiments on the DGGO + LSTM model performance for the purpose of finding an efficient charging station place. The results show that the DGGO + LSTM model has achieved a stunning accuracy of 0.988,836, more than the other models. This approach shapes our finding’s primary purpose of proposing solutions in terms of EV charging infrastructure optimization that is fully justified to the EV’s wide diffusion and mitigating of the environmental consequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Qing完成签到,获得积分10
3秒前
JamesPei应助刻苦的乐巧采纳,获得10
4秒前
江峰发布了新的文献求助10
5秒前
5秒前
Kannan发布了新的文献求助10
5秒前
爆米花应助pj采纳,获得10
5秒前
酷酷的惜海完成签到,获得积分20
6秒前
8秒前
传奇3应助羊羊羊采纳,获得10
12秒前
dd完成签到 ,获得积分10
12秒前
jindou完成签到,获得积分10
13秒前
严逍遥发布了新的文献求助10
13秒前
Aspirin完成签到,获得积分10
14秒前
MchemG应助奋斗的雅柔采纳,获得10
15秒前
科研通AI2S应助念清宸采纳,获得10
16秒前
16秒前
18秒前
rous完成签到,获得积分10
19秒前
holi发布了新的文献求助50
19秒前
20秒前
zhukun完成签到,获得积分10
21秒前
Stygain完成签到,获得积分10
23秒前
23秒前
23秒前
今后应助斯文的难破采纳,获得10
25秒前
26秒前
搜集达人应助wh1t3zZ采纳,获得10
27秒前
ygwu0946完成签到,获得积分10
28秒前
chencchen发布了新的文献求助20
30秒前
英俊的铭应助施梦得采纳,获得30
31秒前
yusheng完成签到,获得积分10
32秒前
33秒前
无名老大应助Smole采纳,获得10
34秒前
35秒前
wddfz完成签到,获得积分10
36秒前
zjh发布了新的文献求助10
37秒前
完美的谷芹完成签到,获得积分20
38秒前
lee完成签到,获得积分20
39秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397301
求助须知:如何正确求助?哪些是违规求助? 3006463
关于积分的说明 8821389
捐赠科研通 2693664
什么是DOI,文献DOI怎么找? 1475409
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675742