无氧运动
合成生物学
化学
计算生物学
生物
生理学
作者
Yixin Rong,Adrian Frey,Emre Özdemir,Arrate Sainz de la Maza Larrea,Songyuan Li,Alex Toftgaard Nielsen,Sheila Ingemann Jensen
标识
DOI:10.1038/s41467-024-53381-4
摘要
Replacing petrochemicals with compounds from bio-based manufacturing processes remains an important part of the global effort to move towards a sustainable future. However, achieving economic viability requires both optimized cell factories and innovative processes. Here, we address this challenge by developing a fermentation platform, which enables two concurrent fermentations in one bioreactor. We first construct a xylitol producing Escherichia coli strain in which CRISPRi-mediated gene silencing is used to switch the metabolism from aerobic to anaerobic, even when the bacteria are under oxic conditions. The switch also decouples growth from production, which further increases the yield. The strain produces acetate as a byproduct, which is subsequently metabolized under oxic conditions by a secondary E. coli strain. Through constraint-based metabolic modelling this strain is designed to co-valorize glucose and the excreted acetate to a secondary product. This unique syntrophic consortium concept facilitates the implementation of "two fermentations in one go", where the concurrent fermentation displays similar titers and productivities as compared to two separate single strain fermentations.
科研通智能强力驱动
Strongly Powered by AbleSci AI