已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FT-FEDTL: A fine-tuned feature-extracted deep transfer learning model for multi-class microwave-based brain tumor classification

学习迁移 人工智能 班级(哲学) 特征(语言学) 微波食品加热 计算机科学 模式识别(心理学) 深度学习 传输(计算) 机器学习 并行计算 电信 哲学 语言学
作者
Amran Hossain,Rafiqul Islam,Mohammad Tariqul Islam,Phumin Kirawanich,Mohamed S. Soliman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:183: 109316-109316
标识
DOI:10.1016/j.compbiomed.2024.109316
摘要

The microwave brain imaging (MBI) system is an emerging technology used to detect brain tumors in their early stages. Multi-class microwave-based brain tumor (MBT) identification and classification are crucial due to the tumor's patterns and shape. Manual identification and categorization of the tumors from the images by physicians is a challenging task and consumes more time. Recently, to overcome these issues, the deep transfer learning (DTL) technique has been used to classify brain tumors efficiently. This paper proposes a Fine-tuned Feature Extracted Deep Transfer Learning Model called FT-FEDTL for multi-class MBT classification purposes. The main objective of this work is to suggest a better pathway for brain tumor diagnosis by designing an efficient DTL model that automatically identifies and categorizes the MBT images. The InceptionV3 architecture is utilized as a base for feature extraction in the proposed FT-FEDTL model. Thereafter, a fine-tuning method is applied to the additional five layers with hyperparameters. The fine-tuned layers are attached to the base model to enhance classification performance. The MBT data are collected from two sources and balanced by augmentation techniques to create a total of 4200 balanced datasets. Later, 80 % images are used for training, 20 % images are utilized for validation, and 80 samples of each class are used for testing the FT-FEDTL model for classifying tumors into six classes. We evaluated and compared the FT-FEDTL model with the three traditional non-CNN and seven pretrained models by applying an imbalanced and balanced dataset. The proposed model showed superior classification performance compared to other models for the balanced dataset. It attained an overall accuracy, recall, precision, specificity, and Fscore of 99.65 %, 99.16 %, 99.48 %, 99.10 %, and 99.23 %, respectively. The experimental outcomes ensure that the proposed model can be employed in biomedical applications to assist radiologists for multi-class MBT image classification purposes. The Anaconda distribution platform with Python 3.7 on the Windows 11 OS is used to implement the models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪女孩一路硕博完成签到,获得积分10
刚刚
天天快乐应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得30
3秒前
大模型应助科研通管家采纳,获得10
3秒前
ok应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
jz完成签到,获得积分10
4秒前
Vivi完成签到,获得积分10
5秒前
ivy发布了新的文献求助10
6秒前
无感完成签到 ,获得积分10
9秒前
桐桐应助ivy采纳,获得10
11秒前
11秒前
风生完成签到,获得积分10
13秒前
田恬完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
17秒前
希望天下0贩的0应助康2000采纳,获得10
19秒前
董竹君发布了新的文献求助10
20秒前
kjding发布了新的文献求助10
22秒前
zwww发布了新的文献求助10
22秒前
chen发布了新的文献求助10
24秒前
28秒前
star完成签到 ,获得积分10
28秒前
31秒前
34秒前
jyw发布了新的文献求助10
37秒前
调研昵称发布了新的文献求助10
37秒前
41秒前
WY发布了新的文献求助10
41秒前
42秒前
45秒前
一一应助小陈要发一区采纳,获得10
45秒前
小胖子发布了新的文献求助10
46秒前
饱满的百招完成签到 ,获得积分10
49秒前
追寻半仙完成签到 ,获得积分10
50秒前
gjww应助WY采纳,获得10
53秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084988
求助须知:如何正确求助?哪些是违规求助? 2738035
关于积分的说明 7547906
捐赠科研通 2387624
什么是DOI,文献DOI怎么找? 1266055
科研通“疑难数据库(出版商)”最低求助积分说明 613267
版权声明 598450