FT-FEDTL: A fine-tuned feature-extracted deep transfer learning model for multi-class microwave-based brain tumor classification

学习迁移 人工智能 班级(哲学) 特征(语言学) 微波食品加热 计算机科学 模式识别(心理学) 深度学习 传输(计算) 机器学习 并行计算 电信 哲学 语言学
作者
Amran Hossain,Rafiqul Islam,Mohammad Tariqul Islam,Phumin Kirawanich,Mohamed S. Soliman
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:183: 109316-109316
标识
DOI:10.1016/j.compbiomed.2024.109316
摘要

The microwave brain imaging (MBI) system is an emerging technology used to detect brain tumors in their early stages. Multi-class microwave-based brain tumor (MBT) identification and classification are crucial due to the tumor's patterns and shape. Manual identification and categorization of the tumors from the images by physicians is a challenging task and consumes more time. Recently, to overcome these issues, the deep transfer learning (DTL) technique has been used to classify brain tumors efficiently. This paper proposes a Fine-tuned Feature Extracted Deep Transfer Learning Model called FT-FEDTL for multi-class MBT classification purposes. The main objective of this work is to suggest a better pathway for brain tumor diagnosis by designing an efficient DTL model that automatically identifies and categorizes the MBT images. The InceptionV3 architecture is utilized as a base for feature extraction in the proposed FT-FEDTL model. Thereafter, a fine-tuning method is applied to the additional five layers with hyperparameters. The fine-tuned layers are attached to the base model to enhance classification performance. The MBT data are collected from two sources and balanced by augmentation techniques to create a total of 4200 balanced datasets. Later, 80 % images are used for training, 20 % images are utilized for validation, and 80 samples of each class are used for testing the FT-FEDTL model for classifying tumors into six classes. We evaluated and compared the FT-FEDTL model with the three traditional non-CNN and seven pretrained models by applying an imbalanced and balanced dataset. The proposed model showed superior classification performance compared to other models for the balanced dataset. It attained an overall accuracy, recall, precision, specificity, and Fscore of 99.65 %, 99.16 %, 99.48 %, 99.10 %, and 99.23 %, respectively. The experimental outcomes ensure that the proposed model can be employed in biomedical applications to assist radiologists for multi-class MBT image classification purposes. The Anaconda distribution platform with Python 3.7 on the Windows 11 OS is used to implement the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zZ发布了新的文献求助10
刚刚
qi完成签到,获得积分10
1秒前
标致缘郡发布了新的文献求助10
1秒前
miawei完成签到,获得积分10
2秒前
2秒前
wangfu发布了新的文献求助10
2秒前
明理依云完成签到,获得积分10
2秒前
2秒前
3秒前
二世小卒完成签到 ,获得积分10
3秒前
和谐乌龟完成签到,获得积分10
4秒前
阳尧完成签到,获得积分10
4秒前
帅气惜霜发布了新的文献求助10
4秒前
4秒前
kkkklo发布了新的文献求助30
6秒前
传奇3应助润润轩轩采纳,获得10
6秒前
6秒前
8秒前
和谐乌龟发布了新的文献求助10
8秒前
zZ完成签到,获得积分10
8秒前
科研小白完成签到,获得积分10
8秒前
LYY发布了新的文献求助10
9秒前
wangfu完成签到,获得积分10
9秒前
ding应助Dddd采纳,获得10
10秒前
yin发布了新的文献求助10
10秒前
大模型应助张张采纳,获得10
10秒前
Akim应助吾问无为谓采纳,获得10
11秒前
11秒前
神勇的冰姬完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
14秒前
tony完成签到,获得积分10
14秒前
Uynaux发布了新的文献求助30
14秒前
SONG完成签到,获得积分10
14秒前
SYLH应助干秋白采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794