清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FT-FEDTL: A fine-tuned feature-extracted deep transfer learning model for multi-class microwave-based brain tumor classification

学习迁移 人工智能 班级(哲学) 特征(语言学) 微波食品加热 计算机科学 模式识别(心理学) 深度学习 传输(计算) 机器学习 并行计算 电信 语言学 哲学
作者
Amran Hossain,Rafiqul Islam,Mohammad Tariqul Islam,Phumin Kirawanich,Mohamed S. Soliman
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:183: 109316-109316
标识
DOI:10.1016/j.compbiomed.2024.109316
摘要

The microwave brain imaging (MBI) system is an emerging technology used to detect brain tumors in their early stages. Multi-class microwave-based brain tumor (MBT) identification and classification are crucial due to the tumor's patterns and shape. Manual identification and categorization of the tumors from the images by physicians is a challenging task and consumes more time. Recently, to overcome these issues, the deep transfer learning (DTL) technique has been used to classify brain tumors efficiently. This paper proposes a Fine-tuned Feature Extracted Deep Transfer Learning Model called FT-FEDTL for multi-class MBT classification purposes. The main objective of this work is to suggest a better pathway for brain tumor diagnosis by designing an efficient DTL model that automatically identifies and categorizes the MBT images. The InceptionV3 architecture is utilized as a base for feature extraction in the proposed FT-FEDTL model. Thereafter, a fine-tuning method is applied to the additional five layers with hyperparameters. The fine-tuned layers are attached to the base model to enhance classification performance. The MBT data are collected from two sources and balanced by augmentation techniques to create a total of 4200 balanced datasets. Later, 80 % images are used for training, 20 % images are utilized for validation, and 80 samples of each class are used for testing the FT-FEDTL model for classifying tumors into six classes. We evaluated and compared the FT-FEDTL model with the three traditional non-CNN and seven pretrained models by applying an imbalanced and balanced dataset. The proposed model showed superior classification performance compared to other models for the balanced dataset. It attained an overall accuracy, recall, precision, specificity, and Fscore of 99.65 %, 99.16 %, 99.48 %, 99.10 %, and 99.23 %, respectively. The experimental outcomes ensure that the proposed model can be employed in biomedical applications to assist radiologists for multi-class MBT image classification purposes. The Anaconda distribution platform with Python 3.7 on the Windows 11 OS is used to implement the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shuo完成签到,获得积分10
5秒前
18秒前
Akim应助追风采纳,获得10
19秒前
细心的如天完成签到 ,获得积分10
32秒前
33秒前
54秒前
57秒前
XD824发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Dreamhappy完成签到,获得积分10
1分钟前
无限晓蓝完成签到 ,获得积分10
1分钟前
1分钟前
John完成签到 ,获得积分10
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
不安青牛应助雪山飞龙采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
wol007完成签到 ,获得积分10
1分钟前
1分钟前
沙海沉戈完成签到,获得积分0
2分钟前
雪山飞龙完成签到,获得积分10
2分钟前
2分钟前
2分钟前
11111发布了新的文献求助10
2分钟前
11111完成签到,获得积分10
2分钟前
WJZ完成签到 ,获得积分10
2分钟前
上官若男应助ZHANGZHANG采纳,获得10
2分钟前
赘婿应助飞翔的企鹅采纳,获得10
2分钟前
3分钟前
XD824完成签到,获得积分10
3分钟前
XD824发布了新的文献求助10
3分钟前
3分钟前
3分钟前
ZHANGZHANG发布了新的文献求助10
3分钟前
lyj完成签到 ,获得积分10
3分钟前
V_I_G完成签到 ,获得积分10
3分钟前
ZJ完成签到,获得积分10
3分钟前
糊涂的青烟完成签到 ,获得积分10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098