FT-FEDTL: A fine-tuned feature-extracted deep transfer learning model for multi-class microwave-based brain tumor classification

学习迁移 人工智能 班级(哲学) 特征(语言学) 微波食品加热 计算机科学 模式识别(心理学) 深度学习 传输(计算) 机器学习 并行计算 电信 哲学 语言学
作者
Amran Hossain,Rafiqul Islam,Mohammad Tariqul Islam,Phumin Kirawanich,Mohamed S. Soliman
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:183: 109316-109316
标识
DOI:10.1016/j.compbiomed.2024.109316
摘要

The microwave brain imaging (MBI) system is an emerging technology used to detect brain tumors in their early stages. Multi-class microwave-based brain tumor (MBT) identification and classification are crucial due to the tumor's patterns and shape. Manual identification and categorization of the tumors from the images by physicians is a challenging task and consumes more time. Recently, to overcome these issues, the deep transfer learning (DTL) technique has been used to classify brain tumors efficiently. This paper proposes a Fine-tuned Feature Extracted Deep Transfer Learning Model called FT-FEDTL for multi-class MBT classification purposes. The main objective of this work is to suggest a better pathway for brain tumor diagnosis by designing an efficient DTL model that automatically identifies and categorizes the MBT images. The InceptionV3 architecture is utilized as a base for feature extraction in the proposed FT-FEDTL model. Thereafter, a fine-tuning method is applied to the additional five layers with hyperparameters. The fine-tuned layers are attached to the base model to enhance classification performance. The MBT data are collected from two sources and balanced by augmentation techniques to create a total of 4200 balanced datasets. Later, 80 % images are used for training, 20 % images are utilized for validation, and 80 samples of each class are used for testing the FT-FEDTL model for classifying tumors into six classes. We evaluated and compared the FT-FEDTL model with the three traditional non-CNN and seven pretrained models by applying an imbalanced and balanced dataset. The proposed model showed superior classification performance compared to other models for the balanced dataset. It attained an overall accuracy, recall, precision, specificity, and Fscore of 99.65 %, 99.16 %, 99.48 %, 99.10 %, and 99.23 %, respectively. The experimental outcomes ensure that the proposed model can be employed in biomedical applications to assist radiologists for multi-class MBT image classification purposes. The Anaconda distribution platform with Python 3.7 on the Windows 11 OS is used to implement the models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
magictoo发布了新的文献求助30
5秒前
7秒前
yang完成签到,获得积分10
7秒前
Minicoper发布了新的文献求助10
8秒前
快乐丸子完成签到,获得积分10
9秒前
简单而复杂完成签到,获得积分10
9秒前
大橙子发布了新的文献求助10
13秒前
张牧之完成签到 ,获得积分10
15秒前
冷冷暴力完成签到,获得积分10
17秒前
YYY完成签到,获得积分10
17秒前
17秒前
gujian完成签到 ,获得积分10
20秒前
帅气的秘密完成签到 ,获得积分10
21秒前
自然函发布了新的文献求助10
25秒前
冰冰双双完成签到,获得积分10
25秒前
开心夏旋完成签到 ,获得积分0
27秒前
我要读博士完成签到 ,获得积分10
30秒前
活泼的大船完成签到,获得积分10
30秒前
AFF完成签到,获得积分10
31秒前
32秒前
无私小小完成签到,获得积分10
33秒前
随心所欲完成签到 ,获得积分10
34秒前
润润轩轩完成签到 ,获得积分10
35秒前
CodeCraft应助大橙子采纳,获得10
35秒前
ZR完成签到,获得积分10
36秒前
magictoo完成签到,获得积分10
36秒前
陈昊发布了新的文献求助10
37秒前
zhangliangfu完成签到 ,获得积分10
37秒前
金石为开完成签到,获得积分10
37秒前
王QQ完成签到 ,获得积分10
39秒前
唐唐完成签到 ,获得积分10
43秒前
最棒哒完成签到 ,获得积分10
43秒前
鸣鸣完成签到,获得积分10
44秒前
123321完成签到 ,获得积分10
45秒前
卓若之完成签到 ,获得积分10
46秒前
苯二氮卓完成签到,获得积分10
47秒前
温暖完成签到 ,获得积分10
49秒前
mojomars完成签到,获得积分10
49秒前
时尚雨兰完成签到,获得积分0
50秒前
一叶知秋完成签到,获得积分10
52秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022