Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锂sdsa发布了新的文献求助10
1秒前
2秒前
lover发布了新的文献求助10
2秒前
科研通AI2S应助尤尔竹采纳,获得10
2秒前
NexusExplorer应助ABS采纳,获得10
3秒前
传奇3应助时尚的菠萝采纳,获得10
4秒前
6秒前
yule完成签到 ,获得积分10
6秒前
something0316完成签到,获得积分10
7秒前
jiajiajai完成签到,获得积分10
7秒前
江峰发布了新的文献求助10
7秒前
8秒前
CC完成签到,获得积分10
8秒前
冷酷紫山发布了新的文献求助10
12秒前
还原苯醌发布了新的文献求助10
12秒前
13秒前
彭于晏应助笑南采纳,获得10
13秒前
梵星应助海贝采纳,获得10
14秒前
吕小布完成签到 ,获得积分10
14秒前
任性起眸发布了新的文献求助10
15秒前
15秒前
锂sdsa完成签到,获得积分20
15秒前
在水一方应助折镜采纳,获得10
16秒前
zkzk54发布了新的文献求助10
17秒前
铲屎官发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
乐观的斑马完成签到,获得积分10
19秒前
乐乐应助研友_想想采纳,获得10
19秒前
20秒前
20秒前
amber发布了新的文献求助10
20秒前
lango完成签到 ,获得积分10
21秒前
李健应助小田心采纳,获得10
21秒前
23秒前
smjjs发布了新的文献求助10
24秒前
25秒前
26秒前
奋斗洋葱完成签到,获得积分10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721