Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CNSgo发布了新的文献求助10
刚刚
星辰大海应助aaaaaa利路亚采纳,获得10
1秒前
1秒前
连糜发布了新的文献求助20
2秒前
朽木白哉完成签到 ,获得积分10
3秒前
wxy发布了新的文献求助10
3秒前
十六夜彦完成签到,获得积分10
4秒前
无奈的代珊完成签到 ,获得积分10
4秒前
无花果应助徐栀采纳,获得10
4秒前
精明外套发布了新的文献求助30
5秒前
YoungLee发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
浮游应助周新哲采纳,获得10
9秒前
连糜完成签到,获得积分10
9秒前
Lucas应助昏睡的绿海采纳,获得10
10秒前
12秒前
12秒前
L-g-b发布了新的文献求助10
13秒前
14秒前
15秒前
小二郎应助不展采纳,获得10
15秒前
YoungLee完成签到,获得积分10
16秒前
nnnnn完成签到,获得积分10
17秒前
核桃应助科研通管家采纳,获得10
17秒前
liyuxuan发布了新的文献求助10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
17秒前
Akim应助科研通管家采纳,获得30
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得30
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
18秒前
sleep应助科研通管家采纳,获得10
18秒前
Hanoi347应助科研通管家采纳,获得30
18秒前
积极从蕾应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560