Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Juid举报老阎求助涉嫌违规
1秒前
快乐的90后fjk完成签到 ,获得积分10
2秒前
good完成签到,获得积分10
3秒前
4秒前
4秒前
10秒前
幽默沛山完成签到 ,获得积分10
10秒前
good发布了新的文献求助10
11秒前
端庄的奇异果完成签到 ,获得积分10
11秒前
12秒前
BroaI完成签到,获得积分20
12秒前
狂野天蓝发布了新的文献求助10
14秒前
搜集达人应助gj2221423采纳,获得10
16秒前
17秒前
小啵招糕完成签到 ,获得积分10
19秒前
活力的友安完成签到,获得积分10
20秒前
20秒前
Ail完成签到,获得积分10
22秒前
陈乔乔完成签到 ,获得积分10
22秒前
22秒前
魏头头发布了新的文献求助10
24秒前
dxszing完成签到 ,获得积分10
24秒前
24秒前
wa发布了新的文献求助10
25秒前
呆妞完成签到,获得积分10
26秒前
BroaI发布了新的文献求助10
27秒前
金屋藏娇发布了新的文献求助10
28秒前
Akim应助蜗牛采纳,获得10
29秒前
英俊的铭应助Echo采纳,获得10
35秒前
38秒前
开心发布了新的文献求助10
38秒前
39秒前
Mic应助科研通管家采纳,获得10
39秒前
脑洞疼应助科研通管家采纳,获得10
39秒前
一叶知秋应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
脑洞疼应助科研通管家采纳,获得10
39秒前
一叶知秋应助科研通管家采纳,获得10
39秒前
桐桐应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538