Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
刚刚
慕青应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
DijiaXu应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
Owen应助科研通管家采纳,获得30
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
@余又又完成签到 ,获得积分10
1秒前
谨慎语堂发布了新的文献求助30
2秒前
3秒前
浮游应助小禾一定行采纳,获得10
3秒前
五五发布了新的文献求助10
3秒前
华仔应助sss采纳,获得10
3秒前
wh完成签到,获得积分10
4秒前
微笑问寒发布了新的文献求助10
5秒前
6秒前
Hello应助小闫同学采纳,获得10
6秒前
三千弱水为君饮完成签到,获得积分10
6秒前
7秒前
8秒前
wenrui完成签到 ,获得积分10
9秒前
jial发布了新的文献求助10
9秒前
丁仪完成签到,获得积分10
9秒前
汤汤完成签到,获得积分10
9秒前
王壮壮完成签到,获得积分10
10秒前
务实晓蓝完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
我是老大应助123采纳,获得10
10秒前
有结果应助Anna采纳,获得20
11秒前
MchemG应助guozizi采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913425
求助须知:如何正确求助?哪些是违规求助? 4188082
关于积分的说明 13006529
捐赠科研通 3956687
什么是DOI,文献DOI怎么找? 2169306
邀请新用户注册赠送积分活动 1187692
关于科研通互助平台的介绍 1095261