Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落晨发布了新的文献求助10
刚刚
Hello应助郑开司09采纳,获得10
1秒前
Jiangnj完成签到,获得积分10
1秒前
昵称发布了新的文献求助10
2秒前
含糊发布了新的文献求助10
2秒前
搜集达人应助8564523采纳,获得10
2秒前
无限的隶发布了新的文献求助10
2秒前
不安豁发布了新的文献求助10
2秒前
www发布了新的文献求助10
3秒前
3秒前
Crystal完成签到,获得积分10
4秒前
Laus发布了新的文献求助10
4秒前
orixero应助碱性沉默采纳,获得10
4秒前
今后应助仙子狗尾巴花采纳,获得10
4秒前
tylerconan完成签到 ,获得积分10
5秒前
5秒前
英俊的铭应助隐形的易巧采纳,获得10
6秒前
独特微笑发布了新的文献求助10
6秒前
学海无涯完成签到,获得积分10
6秒前
科研小民工应助机智苗采纳,获得30
6秒前
楼梯口无头女孩完成签到,获得积分10
9秒前
9秒前
Grayball应助gg采纳,获得10
9秒前
9秒前
456发布了新的文献求助10
9秒前
10秒前
凤凰山发布了新的文献求助10
10秒前
独特的绿蝶完成签到,获得积分10
10秒前
10秒前
清歌扶酒发布了新的文献求助10
10秒前
东风完成签到,获得积分10
11秒前
12秒前
呆萌幼晴完成签到,获得积分10
12秒前
qinqiny完成签到 ,获得积分10
13秒前
13秒前
周小慧完成签到,获得积分20
13秒前
轻松的人龙完成签到,获得积分20
13秒前
小蘑菇应助yxf采纳,获得10
13秒前
1199关注了科研通微信公众号
13秒前
星辰大海应助小赞芽采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762