亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
belolit发布了新的文献求助10
2秒前
wang@163.com完成签到,获得积分20
2秒前
三两白菜完成签到,获得积分10
7秒前
今后应助flyingdodoro采纳,获得10
9秒前
sidashu完成签到,获得积分10
12秒前
一个大花瓶完成签到 ,获得积分10
14秒前
14秒前
Bin_Liu发布了新的文献求助10
18秒前
陈陈完成签到,获得积分10
21秒前
cyt完成签到,获得积分10
22秒前
sss完成签到 ,获得积分10
25秒前
科目三应助cyt采纳,获得10
31秒前
31秒前
flyingdodoro完成签到,获得积分10
38秒前
40秒前
41秒前
中微子完成签到 ,获得积分10
42秒前
flyingdodoro发布了新的文献求助10
45秒前
无极微光应助科研通管家采纳,获得20
47秒前
mzf发布了新的文献求助10
47秒前
48秒前
cyt发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
56秒前
Kkk完成签到 ,获得积分10
59秒前
起风了完成签到 ,获得积分10
1分钟前
MetaMysteria完成签到,获得积分10
1分钟前
木有完成签到 ,获得积分10
1分钟前
郁启蒙完成签到 ,获得积分10
1分钟前
逆光完成签到 ,获得积分10
1分钟前
寒霜扬名完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助diaoyulao采纳,获得10
1分钟前
Noor完成签到,获得积分10
1分钟前
润润润完成签到 ,获得积分10
1分钟前
周依依发布了新的文献求助10
1分钟前
杨怂怂发布了新的文献求助50
1分钟前
luster完成签到 ,获得积分10
2分钟前
2分钟前
ggbond完成签到,获得积分10
2分钟前
Ting完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634616
求助须知:如何正确求助?哪些是违规求助? 4731648
关于积分的说明 14988748
捐赠科研通 4792317
什么是DOI,文献DOI怎么找? 2559479
邀请新用户注册赠送积分活动 1519764
关于科研通互助平台的介绍 1479903