Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
刚刚
刚刚
3秒前
爆米花应助春江采纳,获得10
4秒前
在水一方应助treelet007采纳,获得10
4秒前
4秒前
4秒前
xuxingxing发布了新的文献求助10
5秒前
5秒前
6秒前
庄艺斌完成签到,获得积分10
6秒前
6秒前
7秒前
传奇3应助微光熠采纳,获得10
7秒前
聪明邪欢完成签到,获得积分10
8秒前
科目三应助misaka采纳,获得10
9秒前
9秒前
神音发布了新的文献求助10
9秒前
左西发布了新的文献求助10
9秒前
吴彦祖发布了新的文献求助10
10秒前
瞌睡虫发布了新的文献求助10
11秒前
烟花应助一一采纳,获得30
11秒前
12秒前
xxfsx应助zhe采纳,获得10
12秒前
77发布了新的文献求助10
12秒前
12秒前
13秒前
无花果应助wanfeng采纳,获得10
14秒前
15秒前
天真苑睐完成签到,获得积分10
15秒前
笨笨的荧荧完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
灵巧谷芹发布了新的文献求助10
19秒前
sh应助左西采纳,获得10
19秒前
ding应助tree薯要吃麦麦采纳,获得10
20秒前
22秒前
小青椒应助洪山老狗采纳,获得30
22秒前
瞌睡虫完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431238
求助须知:如何正确求助?哪些是违规求助? 4544308
关于积分的说明 14191949
捐赠科研通 4463001
什么是DOI,文献DOI怎么找? 2446662
邀请新用户注册赠送积分活动 1438033
关于科研通互助平台的介绍 1414720