Pilot study: radiomic analysis for predicting treatment response to whole-brain radiotherapy combined temozolomide in lung cancer brain metastases

列线图 医学 替莫唑胺 接收机工作特性 无线电技术 逻辑回归 肺癌 放射治疗 Lasso(编程语言) 肿瘤科 放射科 核医学 内科学 计算机科学 万维网
作者
Yichu Sun,Fei Liang,Jing Yang,Yong Liu,Zhiyong Shen,Chong Zhou,Youyou Xia
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1395313
摘要

Objective The objective of this study is to assess the viability of utilizing radiomics for predicting the treatment response of lung cancer brain metastases (LCBM) to whole-brain radiotherapy (WBRT) combined with temozolomide (TMZ). Methods Fifty-three patients diagnosed with LCBM and undergoing WBRT combined with TMZ were enrolled. Patients were divided into responsive and non-responsive groups based on the RANO-BM criteria. Radiomic features were extracted from contrast-enhanced the whole brain tissue CT images. Feature selection was performed using t-tests, Pearson correlation coefficients, and Least Absolute Shrinkage And Selection (LASSO) regression. Logistic regression was employed to construct the radiomics model, which was then integrated with clinical data to develop the nomogram model. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed using decision curve analysis (DCA). Results A total of 1834 radiomic features were extracted from each patient's images, and 3 features with predictive value were selected. Both the radiomics and nomogram models exhibited satisfactory predictive performance and clinical utility, with the nomogram model demonstrating superior predictive value. The ROC analysis revealed that the AUC of the radiomics model in the training and testing sets were 0.776 and 0.767, respectively, while the AUC of the nomogram model were 0.799 and 0.833, respectively. DCA curves demonstrated that both models provided benefits to patients across various thresholds. Conclusion Radiomic-defined image biomarkers can effectively predict the treatment response of WBRT combined with TMZ in patients with LCBM, offering potential to optimize treatment decisions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香香关注了科研通微信公众号
1秒前
NightGlow完成签到,获得积分10
1秒前
2秒前
安静无招完成签到 ,获得积分10
3秒前
3秒前
NexusExplorer应助fengliurencai采纳,获得10
5秒前
NexusExplorer应助古月采纳,获得10
5秒前
星辰大海应助33采纳,获得10
7秒前
彭彭发布了新的文献求助10
9秒前
11秒前
老大蒂亚戈应助潇湘雪月采纳,获得10
12秒前
12秒前
14秒前
14秒前
kk完成签到,获得积分10
14秒前
15秒前
HOPE发布了新的文献求助10
15秒前
AAA完成签到,获得积分10
17秒前
Singularity应助讨厌科研采纳,获得10
17秒前
古月发布了新的文献求助10
18秒前
19秒前
33发布了新的文献求助10
19秒前
汉堡包应助于平川春野采纳,获得10
19秒前
星星发布了新的文献求助10
21秒前
22秒前
赘婿应助十九岁的时差采纳,获得10
22秒前
怠惰vs勤劳完成签到,获得积分10
23秒前
夏天应助青山采纳,获得100
24秒前
25秒前
乖猫要努力应助潇湘雪月采纳,获得10
26秒前
wdy111举报风之星求助涉嫌违规
26秒前
古月完成签到,获得积分10
27秒前
27秒前
28秒前
吴所谓发布了新的文献求助50
31秒前
英吉利25发布了新的文献求助10
32秒前
33秒前
酷波er应助南冥采纳,获得10
33秒前
李沐唅完成签到 ,获得积分10
37秒前
lv完成签到,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174