BrainIB: Interpretable Brain Network-Based Psychiatric Diagnosis With Graph Information Bottleneck

瓶颈 图形 精神病诊断 计算机科学 信息瓶颈法 精神科 人工智能 心理学 理论计算机科学 认知 聚类分析 嵌入式系统
作者
Kaizhong Zheng,Shujian Yu,Baojuan Li,Robert Jenssen,Badong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tnnls.2024.3449419
摘要

Developing new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning (ML)-based classifiers using functional connectivity (FC) for psychiatric disorders and healthy controls (HCs) are developed to identify brain markers. However, existing ML-based diagnostic models are prone to overfitting (due to insufficient training samples) and perform poorly in new test environments. Furthermore, it is difficult to obtain explainable and reliable brain biomarkers elucidating the underlying diagnostic decisions. These issues hinder their possible clinical applications. In this work, we propose BrainIB, a new graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI), by leveraging the famed information bottleneck (IB) principle. BrainIB is able to identify the most informative edges in the brain (i.e., subgraph) and generalizes well to unseen data. We evaluate the performance of BrainIB against three baselines and seven state-of-the-art (SOTA) brain network classification methods on three psychiatric datasets and observe that our BrainIB always achieves the highest diagnosis accuracy. It also discovers the subgraph biomarkers that are consistent with clinical and neuroimaging findings. The source code and implementation details of BrainIB are freely available at the GitHub repository (https://github.com/SJYuCNEL/brain-and-Information-Bottleneck).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘xiansheng完成签到,获得积分10
1秒前
wulong完成签到,获得积分10
1秒前
斯文败类应助笨笨西牛采纳,获得10
1秒前
baifan发布了新的文献求助10
2秒前
CipherSage应助笠柚采纳,获得10
2秒前
3秒前
NexusExplorer应助yxy采纳,获得10
3秒前
3秒前
科目三应助jizzy采纳,获得10
4秒前
司徒映寒发布了新的文献求助10
4秒前
脑洞疼应助lige采纳,获得10
6秒前
6秒前
6秒前
缥缈可乐发布了新的文献求助10
6秒前
7秒前
Lea完成签到,获得积分10
7秒前
shenhai发布了新的文献求助10
7秒前
Gloria完成签到,获得积分10
8秒前
9秒前
田様应助123不要动采纳,获得10
10秒前
科研通AI2S应助Echo采纳,获得10
10秒前
12秒前
科研通AI2S应助guoke采纳,获得20
13秒前
烟花应助李颖雪采纳,获得10
13秒前
123关闭了123文献求助
15秒前
zhu发布了新的文献求助10
15秒前
lijingwen发布了新的文献求助30
15秒前
qipupu222完成签到 ,获得积分10
17秒前
17秒前
wangwei发布了新的文献求助20
17秒前
在水一方应助disciple采纳,获得10
19秒前
幸运星完成签到,获得积分10
21秒前
心随以动发布了新的文献求助150
22秒前
22秒前
24秒前
25秒前
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075929
求助须知:如何正确求助?哪些是违规求助? 2728863
关于积分的说明 7506362
捐赠科研通 2377068
什么是DOI,文献DOI怎么找? 1260391
科研通“疑难数据库(出版商)”最低求助积分说明 610974
版权声明 597164