BrainIB: Interpretable Brain Network-Based Psychiatric Diagnosis With Graph Information Bottleneck

瓶颈 图形 精神病诊断 计算机科学 信息瓶颈法 精神科 人工智能 心理学 理论计算机科学 认知 聚类分析 嵌入式系统
作者
Kaizhong Zheng,Shujian Yu,Baojuan Li,Robert Jenssen,Badong Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:6
标识
DOI:10.1109/tnnls.2024.3449419
摘要

Developing new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning (ML)-based classifiers using functional connectivity (FC) for psychiatric disorders and healthy controls (HCs) are developed to identify brain markers. However, existing ML-based diagnostic models are prone to overfitting (due to insufficient training samples) and perform poorly in new test environments. Furthermore, it is difficult to obtain explainable and reliable brain biomarkers elucidating the underlying diagnostic decisions. These issues hinder their possible clinical applications. In this work, we propose BrainIB, a new graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI), by leveraging the famed information bottleneck (IB) principle. BrainIB is able to identify the most informative edges in the brain (i.e., subgraph) and generalizes well to unseen data. We evaluate the performance of BrainIB against three baselines and seven state-of-the-art (SOTA) brain network classification methods on three psychiatric datasets and observe that our BrainIB always achieves the highest diagnosis accuracy. It also discovers the subgraph biomarkers that are consistent with clinical and neuroimaging findings. The source code and implementation details of BrainIB are freely available at the GitHub repository (https://github.com/SJYuCNEL/brain-and-Information-Bottleneck).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得30
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
yznfly应助科研通管家采纳,获得30
1秒前
ED应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
轩辕峻熙完成签到,获得积分10
2秒前
3秒前
cc完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
Lucky完成签到,获得积分10
6秒前
等待醉柳发布了新的文献求助10
6秒前
大模型应助shilang采纳,获得10
7秒前
上官若男应助俭朴的三德采纳,获得10
8秒前
DireWolf完成签到 ,获得积分10
9秒前
kkkkk完成签到,获得积分10
9秒前
令人秃头完成签到 ,获得积分10
9秒前
yuyy完成签到,获得积分10
9秒前
大花生发布了新的文献求助10
10秒前
summer发布了新的文献求助10
10秒前
11秒前
12秒前
小巧的斌完成签到,获得积分10
13秒前
枫叶完成签到,获得积分10
14秒前
16秒前
16秒前
yu完成签到,获得积分10
16秒前
summer完成签到,获得积分10
16秒前
moco完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600