Construction of Risk-Prediction Models for Autogenous Arteriovenous Fistula Thrombosis in Patients on Maintenance Hemodialysis

血液透析 动静脉瘘 医学 血栓形成 重症监护医学 心脏病学 内科学 外科
作者
Qi Xiao,Yuying Fan,Jingshu Li,Xiaona Qi,Xue Li,Hongyi Li
出处
期刊:Blood Purification [Karger Publishers]
卷期号:53 (10): 813-823
标识
DOI:10.1159/000540543
摘要

Introduction: Autogenous arteriovenous fistula (AVF) is the preferred vascular access in patients undergoing maintenance hemodialysis (MHD). However, complications such as thrombosis may occur. This study aimed to construct and validate a machine learning-based risk-prediction model for AVF thrombosis, hypothesizing that such a model can effectively predict occurrences, providing a foundation for early clinical intervention. Methods: The retrospective longitudinal study included a total of 270 patients who underwent MHD at the Hemodialysis Center of the Second Affiliated Hospital of Harbin Medical University between March 2021 and December 2022. During this study, baseline data and scale information of patients between March 2020 and December 2021 were collected. We recorded outcome indicators between March 2021 and December 2022 for subsequent analyses. Five machine learning models were developed (artificial neural network, logistic regression, ridge classification, random forest, and adaptive boosting). The sensitivity (recall), specificity, accuracy, and precision of each model were evaluated. The effect size of each variable was analyzed and ranked. Models were assessed using the area under the receiver-operating characteristic (AUROC) curve. Results: Among the 270 included patients, 105 had AVF thrombosis (55 male and 50 female patients; age range, 29–79 years; mean age, 56.72 years; standard deviation [SDs], ±13.10 years). Conversely, 165 patients did not have AVF thrombosis (99 male and 66 female patients; age range, 23–79 years; mean age, 53.58 years; SD, ± 13.33 years). During the observation period, approximately 52.6% of patients with AVF experienced long-term complications. The most common complications associated with AVF were thrombosis (105; 38.9%), aneurysm formation (27; 10%), and excessively high output flow (10; 3.7%). Fifty-four (20%) patients with AVF required intervention because of complications associated with vascular access. The AUROC curve of the testing set was between 0.858 and 0.903. Conclusion: In this study, we developed five machine learning models to predict the risk of AVF thrombosis, providing a reference for early clinical intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
deng203发布了新的文献求助10
2秒前
2秒前
2秒前
Russula_Chu应助DeepLearning采纳,获得10
2秒前
3秒前
Will发布了新的文献求助10
4秒前
朴实凝雁发布了新的文献求助10
5秒前
墨扬发布了新的文献求助10
6秒前
弓长三金完成签到,获得积分10
6秒前
6秒前
8秒前
qiuqiutantan发布了新的文献求助10
8秒前
桐桐应助az采纳,获得10
8秒前
香蕉觅云应助wykwhu采纳,获得10
8秒前
大力初珍发布了新的文献求助20
9秒前
llllllll发布了新的文献求助10
9秒前
早睡早起完成签到,获得积分10
10秒前
CYY发布了新的文献求助10
11秒前
英俊的铭应助夏夜瞳采纳,获得10
12秒前
angle完成签到,获得积分10
13秒前
星辰大海应助朴实凝雁采纳,获得10
13秒前
上官若男应助kx采纳,获得10
13秒前
15秒前
黄bb完成签到 ,获得积分10
16秒前
deng203发布了新的文献求助10
18秒前
llllllll完成签到,获得积分10
18秒前
qxsw_zjy完成签到,获得积分10
19秒前
HC完成签到 ,获得积分10
19秒前
SciGPT应助xlj采纳,获得10
19秒前
20秒前
21秒前
21秒前
王瑞芳发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助十一一采纳,获得10
24秒前
24秒前
沉默白猫发布了新的文献求助10
26秒前
Ava应助勤奋大地采纳,获得10
26秒前
wykwhu发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760267
求助须知:如何正确求助?哪些是违规求助? 3303566
关于积分的说明 10127139
捐赠科研通 3017898
什么是DOI,文献DOI怎么找? 1657285
邀请新用户注册赠送积分活动 791296
科研通“疑难数据库(出版商)”最低求助积分说明 754188