材料科学
超疏水涂料
莲花效应
植绒(纹理)
接触角
涂层
微观结构
复合材料
制作
表面能
纳米颗粒
纳米技术
化学
医学
原材料
替代医学
有机化学
病理
作者
Qian Li,Qian Wu,Ri Huang,Jinmei Wang,Guodong Shen,Chao Zhi,Lei Wu,Wei Xia
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-08-22
标识
DOI:10.1021/acs.langmuir.4c02026
摘要
Superhydrophobic coatings have broad applications in a variety of industries. By using a low-surface-energy material and creating nanoscale roughness, a superhydrophobic surface can be produced. To overcome the health and environmental concerns of fluorine-based materials and the limitations of large-scale rough microstructure fabrication, a poly(dimethylsiloxane) (PDMS)-based hierarchical superhydrophobic fabric coating prepared by simple thermal treatment and electrostatic flocking technology was introduced in this study. High-temperature thermal treatment is employed to create PDMS nanoparticle-decorated carbon fibers, which are further vertically implanted onto the surface of cotton fabric via electrostatic flocking technology. The environmentally friendly PDMS nanoparticles were adopted as low-surface-energy materials, and the electrostatic flocking technology was utilized to generate a vertically aligned carbon fiber array coating, mimicking a lotus leaf-like superhydrophobic surface microstructure. Therefore, an ultrahigh water contact angle of 173.9 ± 2.8° and a low sliding angle of 1 ± 0.5° can be obtained by the fabric coating with a PDMS-to-carbon fiber ratio of 20:1. The prepared superhydrophobic fabric also exhibits an excellent self-cleaning property and great durability after 60 cycles of washing. Through commercially available thermal treatment and electrostatic flocking processes, this strategy for fabricating fluorine-free superhydrophobic fabric can be easily scaled up for commercial manufacturing and promotes the design of superhydrophobic coatings for other substrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI