Software using artificial intelligence for nodule and cancer detection in CT lung cancer screening: systematic review of test accuracy studies

医学 肺癌 肺癌筛查 梅德林 癌症 考试(生物学) 结核(地质) 诊断准确性 医学物理学 癌症检测 放射科 人工智能 病理 内科学 计算机科学 古生物学 生物 政治学 法学
作者
Julia Geppert,Asra Asgharzadeh,Anna Brown,Chris Stinton,Emma Helm,Surangi Jayakody,Daniel Todkill,Daniel Gallacher,Hesam Ghiasvand,Mubarak Patel,Peter Auguste,Alexander Tsertsvadze,Yen‐Fu Chen,Amy Grove,Bethany Shinkins,Aileen Clarke,Taylor Phillips
出处
期刊:Thorax [BMJ]
卷期号:: thorax-221662
标识
DOI:10.1136/thorax-2024-221662
摘要

Objectives To examine the accuracy and impact of artificial intelligence (AI) software assistance in lung cancer screening using CT. Methods A systematic review of CE-marked, AI-based software for automated detection and analysis of nodules in CT lung cancer screening was conducted. Multiple databases including Medline, Embase and Cochrane CENTRAL were searched from 2012 to March 2023. Primary research reporting test accuracy or impact on reading time or clinical management was included. QUADAS-2 and QUADAS-C were used to assess risk of bias. We undertook narrative synthesis. Results Eleven studies evaluating six different AI-based software and reporting on 19 770 patients were eligible. All were at high risk of bias with multiple applicability concerns. Compared with unaided reading, AI-assisted reading was faster and generally improved sensitivity (+5% to +20% for detecting/categorising actionable nodules; +3% to +15% for detecting/categorising malignant nodules), with lower specificity (−7% to −3% for correctly detecting/categorising people without actionable nodules; −8% to −6% for correctly detecting/categorising people without malignant nodules). AI assistance tended to increase the proportion of nodules allocated to higher risk categories. Assuming 0.5% cancer prevalence, these results would translate into additional 150–750 cancers detected per million people attending screening but lead to an additional 59 700 to 79 600 people attending screening without cancer receiving unnecessary CT surveillance. Conclusions AI assistance in lung cancer screening may improve sensitivity but increases the number of false-positive results and unnecessary surveillance. Future research needs to increase the specificity of AI-assisted reading and minimise risk of bias and applicability concerns through improved study design. PROSPERO registration number CRD42021298449.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃西瓜发布了新的文献求助10
刚刚
1秒前
高高平蝶发布了新的文献求助10
2秒前
Lili发布了新的文献求助10
2秒前
稳重孤丝发布了新的文献求助10
2秒前
科研通AI2S应助橙花采纳,获得10
2秒前
Sophie_W完成签到,获得积分10
3秒前
LYDZ2完成签到,获得积分10
4秒前
lily发布了新的文献求助10
4秒前
充电宝应助记忆采纳,获得10
4秒前
4秒前
4秒前
摸摸头完成签到 ,获得积分10
5秒前
8秒前
CodeCraft应助Lili采纳,获得10
8秒前
快乐的乘风完成签到,获得积分10
8秒前
航行天下完成签到 ,获得积分10
8秒前
李lailai完成签到 ,获得积分10
8秒前
vvSirius完成签到,获得积分10
8秒前
rain123完成签到,获得积分10
8秒前
吴彦祖完成签到,获得积分10
9秒前
hayek完成签到,获得积分10
9秒前
林剑立完成签到,获得积分10
10秒前
太吾墨完成签到,获得积分10
10秒前
10秒前
LYDZ1完成签到,获得积分10
13秒前
完美世界应助殷志远采纳,获得10
13秒前
rain123发布了新的文献求助10
15秒前
16秒前
16秒前
鄂成危完成签到,获得积分10
17秒前
缥缈的妙晴应助热情千风采纳,获得10
17秒前
17秒前
黄橙子完成签到,获得积分10
17秒前
JANE完成签到 ,获得积分10
18秒前
20秒前
情怀应助糖糖采纳,获得30
20秒前
20秒前
生动映波完成签到 ,获得积分10
20秒前
所所应助黄橙子采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023