钴
镍
冶金
合金
材料科学
废物管理
镍合金
工程类
作者
Pravas Ranjan Behera,Rifat Farzana,Veena Sahajwalla
标识
DOI:10.1016/j.jenvman.2024.122371
摘要
With the e-waste growing rapidly all over the globe due to growing demand of electronics, smartphones, etc., coming up with an efficient and sustainable recycling process is the need of the hour. The present work reports a novel and sustainable process of manufacturing Ni alloy by bringing together three major waste streams such as waste Ni-MH batteries, e-waste plastics, and waste glass. The chosen temperature (1550 °C) favours the reduction of nickel-oxide by e-waste plastic as the reductant and sends rare earth elements present in the waste Ni-MH battery as oxide mixture to the slag phase. Waste glass powder used in this process functions as the fluxing agent, hence not requiring any additional flux. The reduction mechanism is gas-based, controlled mainly by hydrogen and carbon monoxide gases released as a result of decomposition of e-waste plastic as reaction commenced from cold zone (∼300 °C) to hot zone (1550 °C) in the horizontal tubular furnace. Formation of nickel alloy and enrichment of slag with mixture of rare earth oxides were confirmed by XRD, SEM-EDS, and Rietveld refining analysis performed on the XRD spectra of slag phase. ICP-OES (Inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectrometer KT-100S) confirmed the high metal content in the alloy, thereby emphasizing the purity (∼98%) which is close to the composition of nickel super alloy. A maximum of 61% by weight REO enrichment was achieved in the slag phase, having La
科研通智能强力驱动
Strongly Powered by AbleSci AI