Intelligent fault diagnosis of rolling bearings in strongly noisy environments using graph convolutional networks

图形 计算机科学 断层(地质) 卷积神经网络 模式识别(心理学) 人工智能 理论计算机科学 地质学 地震学
作者
Lunpan Wei,Xiuyan Peng,Yunpeng Cao
出处
期刊:International Journal of Adaptive Control and Signal Processing [Wiley]
被引量:3
标识
DOI:10.1002/acs.3869
摘要

Summary Rolling bearings often function under complex and non‐stationary conditions, where significant noise interference complicates fault diagnosis by obscuring fault characteristics. This paper presents an innovative fault diagnosis technique using graph convolutional networks (GCN) to address these challenges. Vibration signals are first transformed into the frequency domain through fast Fourier transform (FFT), creating a detailed graph where nodes and edges encapsulate fault signals. The GCN method then extracts complex node features from this graph, enabling a classifier, comprising a fully connected layer and Softmax function, to accurately identify fault types. Experimental results demonstrate the superior performance of the proposed GCN‐based fault diagnosis method, achieving an accuracy of 99.79%. This significantly surpasses traditional machine learning methods (85.4%), deep learning models (92.3%), and other graph neural network approaches (94.1%). Notably, the method shows exceptional resilience to noise, maintaining high accuracy even with 20% added noise, underscoring its robustness for practical industrial applications. The transformation of vibration signals into the frequency domain using FFT, followed by constructing a detailed graph structure, enables the GCN to effectively capture and represent intricate fault characteristics, thus enhancing accurate fault classification. These findings highlight the method's practical applicability and potential for deployment in advanced industrial settings characterized by high noise levels and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到,获得积分10
1秒前
1秒前
2秒前
zoe发布了新的文献求助50
2秒前
3秒前
3秒前
一杯晨汁发布了新的文献求助10
4秒前
LZY发布了新的文献求助10
4秒前
王世俊完成签到,获得积分10
5秒前
积极废物完成签到 ,获得积分10
6秒前
6秒前
认真果汁发布了新的文献求助10
6秒前
meethaha发布了新的文献求助10
6秒前
wdg发布了新的文献求助30
7秒前
7秒前
细腻慕儿完成签到,获得积分10
9秒前
田様应助温婉的篮球采纳,获得10
11秒前
坦率的从波完成签到 ,获得积分10
11秒前
wdg完成签到,获得积分20
13秒前
13秒前
彭佳乐发布了新的文献求助10
13秒前
小李完成签到,获得积分10
14秒前
糊涂的语兰完成签到,获得积分10
15秒前
CipherSage应助酷炫莺采纳,获得10
16秒前
温婉的篮球完成签到,获得积分10
18秒前
19秒前
20秒前
彭佳乐完成签到,获得积分10
21秒前
zhu发布了新的文献求助10
21秒前
小石头完成签到,获得积分10
21秒前
123完成签到,获得积分10
24秒前
一杯晨汁完成签到 ,获得积分10
24秒前
Mopharaoh发布了新的文献求助10
24秒前
许多多完成签到,获得积分10
24秒前
25秒前
zoe发布了新的文献求助10
27秒前
windypk发布了新的文献求助10
27秒前
懵懂的凝丹完成签到 ,获得积分10
27秒前
科研通AI5应助凡仔采纳,获得10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545687
求助须知:如何正确求助?哪些是违规求助? 3977248
关于积分的说明 12315975
捐赠科研通 3645392
什么是DOI,文献DOI怎么找? 2007595
邀请新用户注册赠送积分活动 1043179
科研通“疑难数据库(出版商)”最低求助积分说明 932011