Intelligent fault diagnosis of rolling bearings in strongly noisy environments using graph convolutional networks

图形 计算机科学 断层(地质) 卷积神经网络 模式识别(心理学) 人工智能 理论计算机科学 地质学 地震学
作者
Lunpan Wei,Xiuyan Peng,Yunpeng Cao
出处
期刊:International Journal of Adaptive Control and Signal Processing [Wiley]
被引量:2
标识
DOI:10.1002/acs.3869
摘要

Summary Rolling bearings often function under complex and non‐stationary conditions, where significant noise interference complicates fault diagnosis by obscuring fault characteristics. This paper presents an innovative fault diagnosis technique using graph convolutional networks (GCN) to address these challenges. Vibration signals are first transformed into the frequency domain through fast Fourier transform (FFT), creating a detailed graph where nodes and edges encapsulate fault signals. The GCN method then extracts complex node features from this graph, enabling a classifier, comprising a fully connected layer and Softmax function, to accurately identify fault types. Experimental results demonstrate the superior performance of the proposed GCN‐based fault diagnosis method, achieving an accuracy of 99.79%. This significantly surpasses traditional machine learning methods (85.4%), deep learning models (92.3%), and other graph neural network approaches (94.1%). Notably, the method shows exceptional resilience to noise, maintaining high accuracy even with 20% added noise, underscoring its robustness for practical industrial applications. The transformation of vibration signals into the frequency domain using FFT, followed by constructing a detailed graph structure, enables the GCN to effectively capture and represent intricate fault characteristics, thus enhancing accurate fault classification. These findings highlight the method's practical applicability and potential for deployment in advanced industrial settings characterized by high noise levels and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助flymove采纳,获得10
1秒前
汉堡包应助T拐拐采纳,获得10
1秒前
溜溜很优秀完成签到,获得积分10
3秒前
5秒前
5秒前
7秒前
7秒前
nemuruinu应助Rabbit采纳,获得10
7秒前
研友_VZG64n完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
herdy应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
yookia应助科研通管家采纳,获得10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
LEMONS应助科研通管家采纳,获得10
9秒前
9秒前
核桃应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
烟花应助科研通管家采纳,获得10
10秒前
复杂萃发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
lalala发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
SciGPT应助朴实山兰采纳,获得10
12秒前
T拐拐发布了新的文献求助10
13秒前
13秒前
棋士发布了新的文献求助10
13秒前
14秒前
qqwrv发布了新的文献求助10
14秒前
月眠眠完成签到,获得积分10
15秒前
dachengzi完成签到,获得积分10
16秒前
Lucas应助大神装采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150