Exploring the anti-hepatocellular carcinoma effects of Xianglian Pill: integrating network pharmacology and RNA sequencing via in silico and in vitro studies

生物信息学 肝细胞癌 体外 药理学 计算生物学 核糖核酸 生物 生物信息学 癌症研究 遗传学 基因
作者
Jihan Huang,Ruipeng Shi,Feiyu Chen,Hor‐Yue Tan,Jinbin Zheng,Ning Wang,Ran Li,Yulin Wang,Tao Yang,Yibin Feng,Zhangfeng Zhong
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:133: 155905-155905 被引量:2
标识
DOI:10.1016/j.phymed.2024.155905
摘要

Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王灿章发布了新的文献求助10
刚刚
1秒前
GGGirafe完成签到,获得积分10
1秒前
2秒前
3秒前
McQueen完成签到 ,获得积分10
3秒前
科目三应助wbh采纳,获得10
3秒前
3秒前
5秒前
加油发布了新的文献求助10
5秒前
赘婿应助天玄采纳,获得10
5秒前
脑洞疼应助刘康艺采纳,获得10
5秒前
一两风完成签到,获得积分20
5秒前
星辰大海应助luo采纳,获得30
6秒前
343386625发布了新的文献求助10
7秒前
dalian完成签到,获得积分10
7秒前
大个应助正在跳舞的猪采纳,获得10
8秒前
王佳琪发布了新的文献求助10
8秒前
9秒前
QY11发布了新的文献求助10
9秒前
9秒前
大鱼发布了新的文献求助10
10秒前
在水一方应助ZZ采纳,获得10
10秒前
加油完成签到,获得积分10
10秒前
WangSihu发布了新的文献求助10
11秒前
11秒前
酷波er应助zuojuan采纳,获得10
12秒前
13秒前
14秒前
Light发布了新的文献求助10
14秒前
李若灵完成签到,获得积分10
15秒前
pjmwj完成签到,获得积分10
15秒前
15秒前
15秒前
MYC007完成签到 ,获得积分10
17秒前
隐形曼青应助熬夜的桃子采纳,获得10
17秒前
淡然如蓉发布了新的文献求助10
17秒前
18秒前
18秒前
学术Bond完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760