Incorporating ReS2 Nanosheet into ZnIn2S4 Nanoflower as Synergistic Z‐Scheme Photocatalyst for Highly Effective and Stable Visible‐Light‐Driven Photocatalytic Hydrogen Evolution and Degradation

纳米花 光催化 纳米片 材料科学 可见光谱 纳米技术 化学工程 纳米结构 光电子学 催化作用 化学 生物化学 有机化学 工程类
作者
Le Jia,Nan Ma,P.G. Shao,Yanqing Ge,Jinhong Liu,Wen Dong,H. J. Song,C. Y. Lu,Yixuan Zhou,Xinlong Xu
出处
期刊:Small [Wiley]
卷期号:20 (45): e2404622-e2404622 被引量:25
标识
DOI:10.1002/smll.202404622
摘要

Abstract Inspired by natural photosynthesis, the visible‐light‐driven Z‐scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z‐scheme photocatalyst is constructed by coupling ReS 2 nanosheet and ZnIn 2 S 4 nanoflower and the experimental evidence for this direct Z‐scheme heterostructure is provided by X‐ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z‐scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn 2 S 4 nanoflower. Moreover, the ZnIn 2 S 4 /ReS 2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z‐scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10 −2 min −1 ) and mitoxantrone (4.2 × 10 −3 min −1 ) than that of ZnIn 2 S 4 photocatalyst. The ultraviolet–visible absorption spectra, transient photocurrent spectra, open‐circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn 2 S 4 /ReS 2 heterostructure is mostly attributed to its broad and strong visible‐light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible‐light‐driven Z‐scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龙完成签到,获得积分10
1秒前
刘一一完成签到,获得积分10
2秒前
4秒前
6秒前
传奇3应助木叶采纳,获得10
7秒前
林冬冬完成签到,获得积分10
7秒前
深情安青应助书记采纳,获得10
9秒前
9秒前
幸福台灯完成签到,获得积分10
10秒前
赵星瑶发布了新的文献求助10
10秒前
蓝天发布了新的文献求助10
10秒前
punchline2025发布了新的文献求助10
10秒前
11秒前
英俊的铭应助JJ采纳,获得30
11秒前
SciGPT应助zxzb采纳,获得10
12秒前
WY完成签到,获得积分10
12秒前
飘逸绾绾完成签到,获得积分10
12秒前
14秒前
一一应助还单身的薯片采纳,获得10
16秒前
椰子发布了新的文献求助10
16秒前
shhoing应助英俊雪曼采纳,获得10
16秒前
仅此而已完成签到,获得积分10
16秒前
星奕完成签到 ,获得积分10
17秒前
jias发布了新的文献求助10
17秒前
18秒前
Orange应助liuliu采纳,获得10
18秒前
19秒前
19秒前
19秒前
阿珊完成签到,获得积分10
21秒前
独特的念柏完成签到,获得积分10
21秒前
hrzmlily完成签到,获得积分10
21秒前
22秒前
田様应助耍酷问兰采纳,获得10
23秒前
糯米发布了新的文献求助10
23秒前
蔡丽发布了新的文献求助10
24秒前
毓纡发布了新的文献求助30
25秒前
木叶完成签到,获得积分10
25秒前
DDD完成签到,获得积分10
25秒前
无花果应助侯_采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540506
求助须知:如何正确求助?哪些是违规求助? 4627108
关于积分的说明 14602337
捐赠科研通 4568126
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481998
关于科研通互助平台的介绍 1453645