Efficient density functional theory directed identification of siderophores with increased selectivity towards indium and germanium

铁载体 密度泛函理论 选择性 化学 生物修复 组合化学 计算化学 有机化学 污染 生物化学 生物 催化作用 基因 生态学
作者
Christian Hintersatz,Satoru Tsushima,Tobias Kaufer,Jérôme Kretzschmar,Angela Thewes,Katrin Pollmann,Rohan Jain
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:478: 135523-135523
标识
DOI:10.1016/j.jhazmat.2024.135523
摘要

Siderophores are promising ligands for application in novel recycling and bioremediation technologies, as they can selectively complex a variety of metals. However, with over 250 known siderophores, the selection of suiting complexants in the wet lab is impractical. Thus, this study established a density functional theory (DFT) based approach to efficiently identify siderophores with increased selectivity towards target metals on the example of germanium and indium. Considering 239 structures, chemically similar siderophores were clustered, and their complexation reactions modeled utilizing DFT. The calculations revealed siderophores with, compared to the reference siderophore desferrioxamine B (DFOB), up to 128 % or 48 % higher selectivity for indium or germanium, respectively. Experimental validation of the method was conducted with fimsbactin A and agrobactin, demonstrating up to 40 % more selective indium binding and at least sevenfold better germanium binding than DFOB, respectively. The results generated in this study open the door for the utilization of siderophores in eco-friendly technologies for the recovery of many different critical metals from various industry waters and leachates or bioremediation approaches. This endeavor is greatly facilitated by applying the herein-created database of geometry-optimized siderophore structures as de novo modeling of the molecules can be omitted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
芋圆不圆完成签到,获得积分10
2秒前
招财不肥发布了新的文献求助10
3秒前
zxc111发布了新的文献求助10
3秒前
魔幻的从梦完成签到,获得积分10
3秒前
4秒前
Xiaoxiao应助sunyexuan采纳,获得10
5秒前
6秒前
7秒前
淼淼之锋完成签到 ,获得积分10
7秒前
赢赢完成签到 ,获得积分10
7秒前
8秒前
9秒前
科目三应助落落采纳,获得10
11秒前
67发布了新的文献求助10
11秒前
11秒前
溜溜完成签到,获得积分10
11秒前
xixi完成签到 ,获得积分10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
撒上咖啡应助科研通管家采纳,获得10
12秒前
RC_Wang应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
琪琪扬扬发布了新的文献求助10
12秒前
sutharsons应助科研通管家采纳,获得30
12秒前
orixero应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
清爽老九应助科研通管家采纳,获得20
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
hui发布了新的文献求助30
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808