Integrated network pharmacology and metabolomics to reveal the mechanism of Pinellia ternata inhibiting non-small cell lung cancer cells

半夏 代谢组学 癌细胞 生物化学 癌症 代谢途径 药理学 代谢物 肺癌 生物 化学 新陈代谢 医学 生物信息学 中医药 病理 遗传学 替代医学 内科学
作者
Fan Feng,Ping Hu,Lei Peng,Lisheng Xu,Jun Chen,Qiong Chen,Xingtao Zhang,Xingkui Tao
出处
期刊:BMC complementary medicine and therapies [BioMed Central]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12906-024-04574-3
摘要

Abstract Lung cancer is a malignant tumor with highly heterogeneous characteristics. A classic Chinese medicine, Pinellia ternata (PT), was shown to exert therapeutic effects on lung cancer cells. However, its chemical and pharmacological profiles are not yet understood. In the present study, we aimed to reveal the mechanism of PT in treating lung cancer cells through metabolomics and network pharmacology. Metabolomic analysis of two strains of lung cancer cells treated with Pinellia ternata extracts (PTE) was used to identify differentially abundant metabolites, and the metabolic pathways associated with the DEGs were identified by MetaboAnalyst. Then, network pharmacology was applied to identify potential targets against PTE-induced lung cancer cells. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. PTE obviously inhibited the proliferation, migration and invasion of A549 and NCI-H460 cells. The results of the cellular metabolomics analysis showed that 30 metabolites were differentially expressed in the lung cancer cells of the experimental and control groups. Through pathway enrichment analysis, 5 metabolites were found to be involved in purine metabolism, riboflavin metabolism and the pentose phosphate pathway, including D-ribose 5-phosphate, xanthosine, 5-amino-4-imidazolecarboxyamide, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Combined with network pharmacology, 11 bioactive compounds were found in PT, and networks of bioactive compound–target gene–metabolic enzyme–metabolite interactions were constructed. In conclusion, this study revealed the complicated mechanisms of PT against lung cancer. Our work provides a novel paradigm for identifying the potential mechanisms underlying the pharmacological effects of natural compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘能能发布了新的文献求助30
1秒前
WUQINGHALASHAO完成签到,获得积分10
4秒前
zho发布了新的文献求助10
5秒前
白白白完成签到,获得积分10
7秒前
8秒前
minmin完成签到,获得积分10
9秒前
MathFun完成签到 ,获得积分0
9秒前
ED应助nhnh880518采纳,获得10
9秒前
刘能能完成签到,获得积分10
11秒前
12秒前
脑洞疼应助son采纳,获得10
12秒前
12秒前
白白白发布了新的文献求助10
14秒前
铲铲完成签到,获得积分10
17秒前
haihuhu完成签到 ,获得积分10
18秒前
专一的荧发布了新的文献求助10
18秒前
景景好完成签到,获得积分10
19秒前
陶醉大侠完成签到,获得积分10
20秒前
ldgsd完成签到,获得积分10
22秒前
HCl完成签到,获得积分10
23秒前
平常易烟完成签到,获得积分10
24秒前
收手吧大哥应助Rex采纳,获得10
26秒前
芒果芒果完成签到,获得积分10
27秒前
DRYAN完成签到,获得积分10
28秒前
专一的荧完成签到,获得积分10
28秒前
28秒前
ding应助食草味采纳,获得10
31秒前
liuxl完成签到,获得积分10
31秒前
son发布了新的文献求助10
32秒前
深情安青应助平常易烟采纳,获得10
34秒前
笨笨芯发布了新的文献求助10
35秒前
37秒前
albertchan完成签到,获得积分10
37秒前
39秒前
40秒前
41秒前
41秒前
xy发布了新的文献求助10
42秒前
son完成签到,获得积分10
44秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759216
求助须知:如何正确求助?哪些是违规求助? 3302265
关于积分的说明 10121734
捐赠科研通 3016684
什么是DOI,文献DOI怎么找? 1656564
邀请新用户注册赠送积分活动 790536
科研通“疑难数据库(出版商)”最低求助积分说明 753886