Generating Synthetic Data for Medical Imaging

医学 医学影像学 医学物理学 放射科
作者
Lennart R. Koetzier,Jie Wu,Domenico Mastrodicasa,Aline Lutz,Matthew Chung,Wojciech A. Koszek,Jayanth S. Pratap,Akshay Chaudhari,Pranav Rajpurkar,Matthew P. Lungren,Martin J. Willemink
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3)
标识
DOI:10.1148/radiol.232471
摘要

Artificial intelligence (AI) models for medical imaging tasks, such as classification or segmentation, require large and diverse datasets of images. However, due to privacy and ethical issues, as well as data sharing infrastructure barriers, these datasets are scarce and difficult to assemble. Synthetic medical imaging data generated by AI from existing data could address this challenge by augmenting and anonymizing real imaging data. In addition, synthetic data enable new applications, including modality translation, contrast synthesis, and professional training for radiologists. However, the use of synthetic data also poses technical and ethical challenges. These challenges include ensuring the realism and diversity of the synthesized images while keeping data unidentifiable, evaluating the performance and generalizability of models trained on synthetic data, and high computational costs. Since existing regulations are not sufficient to guarantee the safe and ethical use of synthetic images, it becomes evident that updated laws and more rigorous oversight are needed. Regulatory bodies, physicians, and AI developers should collaborate to develop, maintain, and continually refine best practices for synthetic data. This review aims to provide an overview of the current knowledge of synthetic data in medical imaging and highlights current key challenges in the field to guide future research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
林夕发布了新的文献求助10
4秒前
Langsam完成签到,获得积分10
5秒前
5秒前
smile发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
从容芮应助典雅的惊蛰采纳,获得10
8秒前
8秒前
Hello应助147采纳,获得10
9秒前
张大猛发布了新的文献求助10
9秒前
半芹完成签到,获得积分10
10秒前
周星星发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
华仔应助marinemiao采纳,获得10
13秒前
爱学习的鼠鼠完成签到,获得积分10
13秒前
13秒前
左丘山河发布了新的文献求助10
14秒前
汉堡包应助晚风采纳,获得10
16秒前
coolplex发布了新的文献求助10
17秒前
Nini1203发布了新的文献求助10
17秒前
潇潇暮雨完成签到,获得积分10
19秒前
左丘山河完成签到,获得积分10
20秒前
20秒前
情怀应助robi采纳,获得10
20秒前
20秒前
善学以致用应助张大猛采纳,获得10
21秒前
科研通AI2S应助LGH采纳,获得10
23秒前
25秒前
一一完成签到 ,获得积分10
25秒前
SciGPT应助聂学雨采纳,获得10
25秒前
marinemiao发布了新的文献求助10
26秒前
28秒前
gzw完成签到,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825