已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

mP-Gait: Fine-grained Parkinson's Disease Gait Impairment Assessment with Robust Feature Analysis

步态 物理医学与康复 步态分析 步态参数对能量消耗的影响 计算机科学 医学
作者
W.C. Zhang,Haipeng Dai,Dongyu Xia,Yang Pan,Zeshui Li,Wei Wang,Zhen Li,Lei Wang,Guihai Chen
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:8 (3): 1-31
标识
DOI:10.1145/3678577
摘要

Patients with Parkinson's disease (PD) often show gait impairments including shuffling gait, festination, and lack of arm and leg coordination. Quantitative gait analysis can provide valuable insights for PD diagnosis and monitoring. Prior work has utilized 3D motion capture, foot pressure sensors, IMUs, etc. to assess the severity of gait impairment in PD patients These sensors, despite their high precision, are often expensive and cumbersome to wear which makes them not the best option for long-term monitoring and naturalistic deployment settings. In this paper, we introduce mP-Gait, a millimeter-wave (mmWave) radar-based system designed to detect the gait features in PD patients and predict the severity of their gait impairment. Leveraging the high frequency and wide bandwidth of mmWave radar signals, mP-Gait is able to capture high-resolution reflected signals from different body parts during walking. We develop a pipeline to detect walking, extract gait features using signal analysis methods, and predict patients' UPDRS-III gait scores with a machine learning model. As gait features from PD patients with gait impairment are correctly and robustly extracted, mP-Gait is able to observe the fine-grained gait impairment severity fluctuation caused by medication response. To evaluate mP-Gait, we collected gait features from 144 participants (with UPDRS-III gait scores between 0 and 2) containing over 4000 gait cycles. Our results show that mP-Gait can achieve a mean absolute error of 0.379 points in predicting UPDRS-III gait scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Susantong完成签到,获得积分10
1秒前
1秒前
zhj驳回了Ava应助
2秒前
脑洞疼应助大气的谷梦采纳,获得10
2秒前
cocolu应助过时的含芙采纳,获得10
3秒前
YBR完成签到 ,获得积分10
3秒前
Efference完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
礼礼应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
Summer发布了新的文献求助10
5秒前
6秒前
难过的醉香完成签到,获得积分10
6秒前
熊大完成签到,获得积分10
6秒前
DRWangZm完成签到,获得积分20
8秒前
枇杷完成签到 ,获得积分10
12秒前
12秒前
神无完成签到 ,获得积分10
14秒前
DRWangZm发布了新的文献求助10
15秒前
Efference发布了新的文献求助10
15秒前
16秒前
雪白元风完成签到 ,获得积分10
16秒前
小虎驳回了0905应助
18秒前
善学以致用应助livian采纳,获得30
20秒前
kaysar1001发布了新的文献求助30
23秒前
marongzhi完成签到 ,获得积分10
23秒前
瑶咕隆咚完成签到,获得积分10
25秒前
Summer完成签到,获得积分10
26秒前
Belinda完成签到 ,获得积分10
27秒前
李大刚完成签到 ,获得积分10
30秒前
D-L@rabbit完成签到,获得积分10
31秒前
科研小刘完成签到,获得积分10
31秒前
32秒前
35秒前
人间耙耙柑完成签到 ,获得积分10
36秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330319
求助须知:如何正确求助?哪些是违规求助? 2959871
关于积分的说明 8597630
捐赠科研通 2638443
什么是DOI,文献DOI怎么找? 1444389
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656702