重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Artificial Intelligence‐Assisted Ultrasound Diagnosis on Infant Developmental Dysplasia of the Hip Under Constrained Computational Resources

医学 超声波 预测值 诊断准确性 超声学家 髋关节发育不良 放射科 内科学 射线照相术
作者
Bingxuan Huang,Bei Xia,Jikuan Qian,Xinrui Zhou,Xu Zhou,Shengfeng Liu,Chang Ao,Zhongnuo Yan,Zijian Tang,Na Xu,Hongwei Tao,Xuezhi He,Wei Yu,Renfu Zhang,Ruobing Huang,Dong Ni,Xin Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (6): 1235-1248 被引量:8
标识
DOI:10.1002/jum.16133
摘要

Ultrasound (US) is important for diagnosing infant developmental dysplasia of the hip (DDH). However, the accuracy of the diagnosis depends heavily on expertise. We aimed to develop a novel automatic system (DDHnet) for accurate, fast, and robust diagnosis of DDH.An automatic system, DDHnet, was proposed to diagnose DDH by analyzing static ultrasound images. A five-fold cross-validation experiment was conducted using a dataset containing 881 patients to verify the performance of DDHnet. In addition, a blind test was conducted on 209 patients (158 normal and 51 abnormal cases). The feasibility and performance of DDHnet were investigated by embedding it into ultrasound machines at low computational cost.DDHnet obtained reliable measurements and accurate diagnosis predictions. It reported an intra-class correlation coefficient (ICC) on α angle of 0.96 (95% CI: 0.93-0.97), β angle of 0.97 (95% CI: 0.95-0.98), FHC of 0.98 (95% CI: 0.96-0.99) and PFD of 0.94 (95% CI: 0.90-0.96) in abnormal cases. DDHnet achieved a sensitivity of 90.56%, specificity of 100%, accuracy of 98.64%, positive predictive value (PPV) of 100%, and negative predictive value (NPV) of 98.44% for the diagnosis of DDH. For the measurement task on the US device, DDHnet took only 1.1 seconds to operate and complete, whereas the experienced senior expert required an average 41.4 seconds.The proposed DDHnet demonstrate state-of-the-art performance for all four indicators of DDH diagnosis. Fast and highly accurate DDH diagnosis is achievable through DDHnet, and is accessible under constrained computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助21世纪活化石采纳,获得10
刚刚
1秒前
1秒前
YuGe发布了新的文献求助10
1秒前
科研通AI6应助xshuang采纳,获得10
1秒前
1秒前
CHENGJIAO完成签到,获得积分20
1秒前
Anovel发布了新的文献求助10
2秒前
匹夫完成签到,获得积分10
2秒前
我是老大应助拼搏雨兰采纳,获得10
3秒前
小蘑菇应助zxy采纳,获得30
3秒前
18岁中二少年完成签到,获得积分10
3秒前
cc完成签到,获得积分10
3秒前
Jasper应助6666采纳,获得10
3秒前
asiera完成签到,获得积分10
3秒前
Emanuel完成签到,获得积分10
3秒前
zhengyf发布了新的文献求助10
3秒前
YM发布了新的文献求助10
4秒前
keke完成签到,获得积分10
4秒前
bai发布了新的文献求助10
4秒前
自然乌龟完成签到,获得积分10
4秒前
孤独安萱发布了新的文献求助10
4秒前
共享精神应助沉默的基因采纳,获得10
5秒前
CHENGJIAO发布了新的文献求助10
5秒前
5秒前
星辰大海应助郭文汇采纳,获得10
5秒前
玩命的雁丝完成签到 ,获得积分10
6秒前
7秒前
wanci应助LHHH采纳,获得10
7秒前
烟花应助婷婷采纳,获得10
7秒前
7秒前
7秒前
苡若发布了新的文献求助10
7秒前
小梁要加油完成签到,获得积分10
7秒前
自信诗桃完成签到,获得积分10
8秒前
王强发布了新的文献求助10
8秒前
HQQ发布了新的文献求助10
8秒前
酷波er应助心理可达鸭采纳,获得10
8秒前
研友_VZG7GZ应助伶俐草丛采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612