Artificial Intelligence‐Assisted Ultrasound Diagnosis on Infant Developmental Dysplasia of the Hip Under Constrained Computational Resources

医学 超声波 预测值 诊断准确性 超声学家 髋关节发育不良 放射科 内科学 射线照相术
作者
Bingxuan Huang,Bei Xia,Jikuan Qian,Xinrui Zhou,Xu Zhou,Shengfeng Liu,Chang Ao,Zhongnuo Yan,Zijian Tang,Na Xu,Hongwei Tao,Xuezhi He,Wei Yu,Renfu Zhang,Ruobing Huang,Dong Ni,Xin Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (6): 1235-1248 被引量:3
标识
DOI:10.1002/jum.16133
摘要

Ultrasound (US) is important for diagnosing infant developmental dysplasia of the hip (DDH). However, the accuracy of the diagnosis depends heavily on expertise. We aimed to develop a novel automatic system (DDHnet) for accurate, fast, and robust diagnosis of DDH.An automatic system, DDHnet, was proposed to diagnose DDH by analyzing static ultrasound images. A five-fold cross-validation experiment was conducted using a dataset containing 881 patients to verify the performance of DDHnet. In addition, a blind test was conducted on 209 patients (158 normal and 51 abnormal cases). The feasibility and performance of DDHnet were investigated by embedding it into ultrasound machines at low computational cost.DDHnet obtained reliable measurements and accurate diagnosis predictions. It reported an intra-class correlation coefficient (ICC) on α angle of 0.96 (95% CI: 0.93-0.97), β angle of 0.97 (95% CI: 0.95-0.98), FHC of 0.98 (95% CI: 0.96-0.99) and PFD of 0.94 (95% CI: 0.90-0.96) in abnormal cases. DDHnet achieved a sensitivity of 90.56%, specificity of 100%, accuracy of 98.64%, positive predictive value (PPV) of 100%, and negative predictive value (NPV) of 98.44% for the diagnosis of DDH. For the measurement task on the US device, DDHnet took only 1.1 seconds to operate and complete, whereas the experienced senior expert required an average 41.4 seconds.The proposed DDHnet demonstrate state-of-the-art performance for all four indicators of DDH diagnosis. Fast and highly accurate DDH diagnosis is achievable through DDHnet, and is accessible under constrained computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
orixero应助小杨采纳,获得10
3秒前
QQ完成签到 ,获得积分10
3秒前
xixi发布了新的文献求助10
4秒前
Wang发布了新的文献求助10
5秒前
WQH完成签到,获得积分10
5秒前
hyk完成签到,获得积分20
8秒前
朱古力完成签到,获得积分10
9秒前
12秒前
13秒前
完美世界应助RW采纳,获得10
14秒前
16秒前
17秒前
17秒前
17秒前
柔弱的友瑶完成签到,获得积分10
18秒前
L同学发布了新的文献求助10
18秒前
云澈完成签到,获得积分10
19秒前
FashionBoy应助wwwwj采纳,获得10
19秒前
落后寒凡完成签到,获得积分10
19秒前
20秒前
xiongyh10发布了新的文献求助10
20秒前
Hello应助小城故事和冰雨采纳,获得10
20秒前
22秒前
paws发布了新的文献求助10
22秒前
爱音关注了科研通微信公众号
22秒前
安和桥发布了新的文献求助10
22秒前
sunzhuxi发布了新的文献求助10
23秒前
鹏鹏发布了新的文献求助10
24秒前
可靠的大侠完成签到 ,获得积分10
24秒前
pp发布了新的文献求助30
25秒前
ZZZ关闭了ZZZ文献求助
26秒前
中和皇极应助123采纳,获得10
28秒前
李健应助执着的日记本采纳,获得10
28秒前
paws完成签到,获得积分10
31秒前
zoie0809完成签到,获得积分10
33秒前
33秒前
高高旭尧关注了科研通微信公众号
33秒前
35秒前
wwwwj发布了新的文献求助10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261058
求助须知:如何正确求助?哪些是违规求助? 2901992
关于积分的说明 8318508
捐赠科研通 2571708
什么是DOI,文献DOI怎么找? 1397242
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216