Artificial Intelligence‐Assisted Ultrasound Diagnosis on Infant Developmental Dysplasia of the Hip Under Constrained Computational Resources

医学 超声波 预测值 诊断准确性 超声学家 髋关节发育不良 放射科 内科学 射线照相术
作者
Bingxuan Huang,Bei Xia,Jikuan Qian,Xinrui Zhou,Xu Zhou,Shengfeng Liu,Chang Ao,Zhongnuo Yan,Zijian Tang,Na Xu,Hongwei Tao,Xuezhi He,Wei Yu,Renfu Zhang,Ruobing Huang,Dong Ni,Xin Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (6): 1235-1248 被引量:8
标识
DOI:10.1002/jum.16133
摘要

Ultrasound (US) is important for diagnosing infant developmental dysplasia of the hip (DDH). However, the accuracy of the diagnosis depends heavily on expertise. We aimed to develop a novel automatic system (DDHnet) for accurate, fast, and robust diagnosis of DDH.An automatic system, DDHnet, was proposed to diagnose DDH by analyzing static ultrasound images. A five-fold cross-validation experiment was conducted using a dataset containing 881 patients to verify the performance of DDHnet. In addition, a blind test was conducted on 209 patients (158 normal and 51 abnormal cases). The feasibility and performance of DDHnet were investigated by embedding it into ultrasound machines at low computational cost.DDHnet obtained reliable measurements and accurate diagnosis predictions. It reported an intra-class correlation coefficient (ICC) on α angle of 0.96 (95% CI: 0.93-0.97), β angle of 0.97 (95% CI: 0.95-0.98), FHC of 0.98 (95% CI: 0.96-0.99) and PFD of 0.94 (95% CI: 0.90-0.96) in abnormal cases. DDHnet achieved a sensitivity of 90.56%, specificity of 100%, accuracy of 98.64%, positive predictive value (PPV) of 100%, and negative predictive value (NPV) of 98.44% for the diagnosis of DDH. For the measurement task on the US device, DDHnet took only 1.1 seconds to operate and complete, whereas the experienced senior expert required an average 41.4 seconds.The proposed DDHnet demonstrate state-of-the-art performance for all four indicators of DDH diagnosis. Fast and highly accurate DDH diagnosis is achievable through DDHnet, and is accessible under constrained computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shine完成签到,获得积分10
2秒前
3秒前
isfj发布了新的文献求助10
3秒前
好好好发布了新的文献求助10
4秒前
搜集达人应助兴武采纳,获得10
6秒前
8秒前
坚强谷雪发布了新的文献求助10
8秒前
8秒前
完美世界应助急诊守夜人采纳,获得10
8秒前
和院发布了新的文献求助10
9秒前
溪鱼完成签到,获得积分10
10秒前
10秒前
Wulei完成签到 ,获得积分10
10秒前
文杰发布了新的文献求助10
12秒前
13秒前
影像大侠完成签到 ,获得积分10
14秒前
陈世超发布了新的文献求助10
15秒前
在水一方应助满意的白云采纳,获得10
15秒前
番茄完成签到,获得积分10
16秒前
忧虑的慕山完成签到,获得积分10
17秒前
17秒前
和院完成签到,获得积分10
18秒前
18秒前
19秒前
bkagyin应助冤家Gg采纳,获得10
19秒前
端庄忆梅完成签到,获得积分10
20秒前
20秒前
zhihe完成签到,获得积分10
21秒前
小衫生完成签到,获得积分10
21秒前
logan完成签到,获得积分10
22秒前
xu11完成签到,获得积分10
22秒前
22秒前
xh发布了新的文献求助10
22秒前
Gloriauuu发布了新的文献求助10
23秒前
无花果应助xh采纳,获得10
23秒前
欢喜的采梦完成签到,获得积分10
25秒前
雷寒云发布了新的文献求助10
25秒前
宋宋完成签到 ,获得积分10
27秒前
土土发布了新的文献求助30
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214709
求助须知:如何正确求助?哪些是违规求助? 4390186
关于积分的说明 13668965
捐赠科研通 4251601
什么是DOI,文献DOI怎么找? 2332784
邀请新用户注册赠送积分活动 1330424
关于科研通互助平台的介绍 1284128