Artificial Intelligence‐Assisted Ultrasound Diagnosis on Infant Developmental Dysplasia of the Hip Under Constrained Computational Resources

医学 超声波 预测值 诊断准确性 超声学家 髋关节发育不良 放射科 内科学 射线照相术
作者
Bingxuan Huang,Bei Xia,Jikuan Qian,Xinrui Zhou,Xu Zhou,Shengfeng Liu,Chang Ao,Zhongnuo Yan,Zijian Tang,Na Xu,Hongwei Tao,Xuezhi He,Wei Yu,Renfu Zhang,Ruobing Huang,Dong Ni,Xin Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (6): 1235-1248 被引量:8
标识
DOI:10.1002/jum.16133
摘要

Ultrasound (US) is important for diagnosing infant developmental dysplasia of the hip (DDH). However, the accuracy of the diagnosis depends heavily on expertise. We aimed to develop a novel automatic system (DDHnet) for accurate, fast, and robust diagnosis of DDH.An automatic system, DDHnet, was proposed to diagnose DDH by analyzing static ultrasound images. A five-fold cross-validation experiment was conducted using a dataset containing 881 patients to verify the performance of DDHnet. In addition, a blind test was conducted on 209 patients (158 normal and 51 abnormal cases). The feasibility and performance of DDHnet were investigated by embedding it into ultrasound machines at low computational cost.DDHnet obtained reliable measurements and accurate diagnosis predictions. It reported an intra-class correlation coefficient (ICC) on α angle of 0.96 (95% CI: 0.93-0.97), β angle of 0.97 (95% CI: 0.95-0.98), FHC of 0.98 (95% CI: 0.96-0.99) and PFD of 0.94 (95% CI: 0.90-0.96) in abnormal cases. DDHnet achieved a sensitivity of 90.56%, specificity of 100%, accuracy of 98.64%, positive predictive value (PPV) of 100%, and negative predictive value (NPV) of 98.44% for the diagnosis of DDH. For the measurement task on the US device, DDHnet took only 1.1 seconds to operate and complete, whereas the experienced senior expert required an average 41.4 seconds.The proposed DDHnet demonstrate state-of-the-art performance for all four indicators of DDH diagnosis. Fast and highly accurate DDH diagnosis is achievable through DDHnet, and is accessible under constrained computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cc66发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
虚拟的皮卡丘完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
bow完成签到 ,获得积分10
6秒前
10秒前
优雅的WAN完成签到 ,获得积分10
11秒前
所所应助cc66采纳,获得10
11秒前
LQ完成签到,获得积分10
12秒前
hui完成签到,获得积分10
12秒前
无心的天真完成签到 ,获得积分10
13秒前
君莫笑完成签到,获得积分10
13秒前
热心不凡完成签到,获得积分10
16秒前
乌特拉完成签到 ,获得积分10
16秒前
晚风完成签到,获得积分10
16秒前
元夕完成签到,获得积分10
16秒前
飘逸蘑菇完成签到 ,获得积分10
18秒前
风中的棒棒糖完成签到 ,获得积分10
21秒前
无私的听荷完成签到,获得积分10
21秒前
飘萍过客完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
皛鱼完成签到,获得积分10
25秒前
大脸猫完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
小林神发布了新的文献求助10
27秒前
adamchris完成签到,获得积分10
27秒前
strama完成签到,获得积分10
28秒前
梓唯忧完成签到 ,获得积分10
29秒前
29秒前
pan完成签到,获得积分10
29秒前
科研通AI6.1应助michael采纳,获得30
31秒前
Cooper应助昏睡的听云采纳,获得10
31秒前
Yuan完成签到,获得积分10
32秒前
碧蓝百合发布了新的文献求助10
34秒前
小林神完成签到,获得积分10
34秒前
34秒前
强小强完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099