Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition

溶剂化 化学 力场(虚构) 人工神经网络 吉布斯自由能 数量结构-活动关系 试验装置 计算化学 分子 环己烷 从头算 分子描述符 分子动力学 隐溶剂化 计算机科学 机器学习 生物系统 热力学 人工智能 有机化学 物理 生物
作者
Kaycee Low,Michelle L. Coote,Ekaterina I. Izgorodina
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (22): 5457-5470 被引量:31
标识
DOI:10.1021/acs.jcim.2c01013
摘要

The prediction of a molecule's solvation Gibbs free (ΔGsolv) energy in a given solvent is an important task which has traditionally been carried out via quantum chemical continuum methods or force field-based molecular simulations. Machine learning (ML) and graph neural networks in particular have emerged as powerful techniques for elucidating structure-property relationships. This work presents a graph neural network (GNN) for the prediction of ΔGsolv which, in addition to encoding typical atom and bond-level features, incorporates chemically intuitive, solvation-relevant parameters into the featurization process: semiempirical partial atomic charges and solvent dielectric constant. Solute-solvent interactions are included via an interaction map layer which can be visualized to examine solubility-enhancing or -decreasing interactions learnt by the model. On a test set of small organic molecules, our GNN predicts ΔGsolv in water and cyclohexane with an accuracy comparable to polarizable and ab initio generated force field methods [mean absolute error (MAE) = 0.4 and 0.2 kcal mol-1, respectively], without the need for any molecular simulation. For the FreeSolv data set of hydration free energies, the test MAE is 0.7 kcal mol-1. Interpretability and applicability of the model is highlighted through several examples including rationalizing the increased solubility of modified diaminoanthraquinones in organic solvents. The clear explanations afforded by our GNN allow for easy understanding of the model's predictions, giving the experimental chemist confidence in employing ML models toward more optimized synthetic routes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keeryu完成签到,获得积分10
1秒前
崔尔蓉完成签到,获得积分10
1秒前
1秒前
luo发布了新的文献求助10
1秒前
2秒前
占那个完成签到 ,获得积分10
2秒前
2秒前
louge完成签到,获得积分10
3秒前
科研通AI6应助zzxx采纳,获得10
3秒前
4秒前
旧雨新知完成签到 ,获得积分10
4秒前
5秒前
walu完成签到,获得积分10
5秒前
彩色世倌发布了新的文献求助10
5秒前
Hohaha发布了新的文献求助10
6秒前
7秒前
7秒前
max完成签到,获得积分10
7秒前
快乐旭尧完成签到,获得积分10
10秒前
LXY171发布了新的文献求助20
10秒前
walu发布了新的文献求助20
10秒前
丁浩伦应助小火锅采纳,获得10
10秒前
QQ发布了新的文献求助10
11秒前
Hazel发布了新的文献求助10
13秒前
11111完成签到,获得积分10
13秒前
小蘑菇应助颜林林采纳,获得10
13秒前
小马完成签到,获得积分10
14秒前
顾矜应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
Zz应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得30
16秒前
科研通AI6应助madmax采纳,获得30
16秒前
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888