转矩脉动
总谐波失真
扭矩
遗传算法
牵引电动机
牵引(地质)
直线(几何图形)
计算机科学
控制理论(社会学)
汽车工程
优化设计
电压
工程类
直接转矩控制
数学
电气工程
感应电动机
机械工程
物理
几何学
控制(管理)
机器学习
人工智能
热力学
作者
Minsu Kwon,Dong–Kuk Lim
标识
DOI:10.1109/cefc55061.2022.9940843
摘要
This paper proposes a method combining random forest technique (RF) and genetic algorithm (GA) for optimal design of traction motors for electric vehicles (EVs). The target motor is the permanent magnet assistant synchronous re-luctance Motor (PMa-SynRM) and the design goal is increasing the average torque and efficiency and reducing torque ripple and the total harmonic distortion of line-to-line back elec-tromotive force. The prediction accuracy of the RF was im-proved through hyperparameter tuning and verified through several test functions. The applicability of the proposed method is verified by deriving the optimal design of PMa-SynRM for EVs and improving the target motor performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI