Artificial Intelligence in Breast Cancer Screening

医学 食品药品监督管理局 急诊分诊台 乳腺癌 间隙 梅德林 人工智能 临床试验 癌症 医学物理学 机器学习 病理 精神科 医疗急救 内科学 计算机科学 泌尿科 政治学 法学
作者
Kunal C. Potnis,Joseph S. Ross,Sanjay Aneja,Cary P. Gross,Ilana B. Richman
出处
期刊:JAMA Internal Medicine [American Medical Association]
卷期号:182 (12): 1306-1306 被引量:28
标识
DOI:10.1001/jamainternmed.2022.4969
摘要

Contemporary approaches to artificial intelligence (AI) based on deep learning have generated interest in the application of AI to breast cancer screening (BCS). The US Food and Drug Administration (FDA) has approved several next-generation AI products indicated for BCS in recent years; however, questions regarding their accuracy, appropriate use, and clinical utility remain.To describe the current FDA regulatory process for AI products, summarize the evidence used to support FDA clearance and approval of AI products indicated for BCS, consider the advantages and limitations of current regulatory approaches, and suggest ways to improve the current system.Premarket notifications and other publicly available documents used for FDA clearance and approval of AI products indicated for BCS from January 1, 2017, to December 31, 2021.Nine AI products indicated for BCS for identification of suggestive lesions and mammogram triage were included. Most of the products had been cleared through the 510(k) pathway, and all clearances were based on previously collected retrospective data; 6 products used multicenter designs; 7 products used enriched data; and 4 lacked details on whether products were externally validated. Test performance measures, including sensitivity, specificity, and area under the curve, were the main outcomes reported. Most of the devices used tissue biopsy as the criterion standard for BCS accuracy evaluation. Other clinical outcome measures, including cancer stage at diagnosis and interval cancer detection, were not reported for any of the devices.The findings of this review suggest important gaps in reporting of data sources, data set type, validation approach, and clinical utility assessment. As AI-assisted reading becomes more widespread in BCS and other radiologic examinations, strengthened FDA evidentiary regulatory standards, development of postmarketing surveillance, a focus on clinically meaningful outcomes, and stakeholder engagement will be critical for ensuring the safety and efficacy of these products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助cheche采纳,获得10
刚刚
大脚丫发布了新的文献求助10
刚刚
1秒前
斯文败类应助chenzy采纳,获得10
2秒前
夏天发布了新的文献求助10
3秒前
bathygobius完成签到,获得积分10
3秒前
整齐芷文发布了新的文献求助10
3秒前
3秒前
无花果应助jing采纳,获得10
4秒前
Lynn发布了新的文献求助10
4秒前
yc发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
8秒前
pu发布了新的文献求助10
8秒前
田様应助火火火采纳,获得10
9秒前
shang完成签到 ,获得积分10
9秒前
CipherSage应助yc采纳,获得10
10秒前
彭于晏应助Lynn采纳,获得10
10秒前
方方方发布了新的文献求助10
10秒前
11秒前
在水一方应助彩色觅柔采纳,获得10
11秒前
jiao发布了新的文献求助10
12秒前
勤恳马里奥应助HOHO采纳,获得10
12秒前
13秒前
qian发布了新的文献求助10
13秒前
89757完成签到,获得积分10
13秒前
14秒前
英姑应助pu采纳,获得10
14秒前
14秒前
后陡门的夏完成签到,获得积分10
14秒前
夏天完成签到,获得积分10
15秒前
15秒前
1024完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
lala发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135300
求助须知:如何正确求助?哪些是违规求助? 2786282
关于积分的说明 7776733
捐赠科研通 2442250
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847