已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Traffic Conflict Prediction at Signal Cycle Level Using Bayesian Optimized Machine Learning Approaches

支持向量机 计算机科学 贝叶斯概率 超参数 机器学习 随机森林 人工智能 贝叶斯定理 灵敏度(控制系统) 朴素贝叶斯分类器 工程类 控制(管理) 电子工程
作者
Lai Zheng,Zhenlin Hu,Tarek Sayed
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (5): 183-195 被引量:11
标识
DOI:10.1177/03611981221128812
摘要

This study develops non-parametric models to predict traffic conflicts at signalized intersections at the signal cycle level using machine learning approaches. Three different datasets were collected, one from Surrey, Canada, and the other two from Los Angeles and Georgia, U.S.A. From the datasets, traffic conflicts measured by modified time to collision and traffic parameters such as traffic volume, shockwave area, platoon ratio, and shockwave speed were extracted. Multilayer perceptron (MLP), support vector regression (SVR), and random forest (RF) models were developed based on the Surrey dataset, and the Bayesian optimization approach was adopted to optimize the model hyperparameters. The optimized models were applied to the Los Angeles and Georgia datasets to test their transferability, and they were also compared to a traditional safety performance function (SPF) developed using negative binominal regression. The results show that all the three Bayesian optimized machine learning models have high predictive accuracy and acceptable transferability, and the MLP model is a little better than the SVR and RF models. In addition, all three models outperform the traditional SPF with regard to predictive accuracy. The model sensitivity analysis also show that the traffic volume and shockwave area have positive effects on traffic conflicts, while the platoon ratio has negative effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研小白发布了新的文献求助10
2秒前
zzzdx发布了新的文献求助10
2秒前
慕青应助懒羊羊采纳,获得200
3秒前
zhuangxx关注了科研通微信公众号
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
slender发布了新的文献求助10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
一丁雨发布了新的文献求助10
5秒前
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
hyl完成签到,获得积分10
7秒前
传奇3应助初夏采纳,获得10
7秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779123
求助须知:如何正确求助?哪些是违规求助? 5645950
关于积分的说明 15451285
捐赠科研通 4910582
什么是DOI,文献DOI怎么找? 2642743
邀请新用户注册赠送积分活动 1590446
关于科研通互助平台的介绍 1544810