Traffic Conflict Prediction at Signal Cycle Level Using Bayesian Optimized Machine Learning Approaches

支持向量机 计算机科学 贝叶斯概率 超参数 机器学习 随机森林 人工智能 贝叶斯定理 灵敏度(控制系统) 朴素贝叶斯分类器 工程类 控制(管理) 电子工程
作者
Lai Zheng,Zhenlin Hu,Tarek Sayed
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (5): 183-195 被引量:4
标识
DOI:10.1177/03611981221128812
摘要

This study develops non-parametric models to predict traffic conflicts at signalized intersections at the signal cycle level using machine learning approaches. Three different datasets were collected, one from Surrey, Canada, and the other two from Los Angeles and Georgia, U.S.A. From the datasets, traffic conflicts measured by modified time to collision and traffic parameters such as traffic volume, shockwave area, platoon ratio, and shockwave speed were extracted. Multilayer perceptron (MLP), support vector regression (SVR), and random forest (RF) models were developed based on the Surrey dataset, and the Bayesian optimization approach was adopted to optimize the model hyperparameters. The optimized models were applied to the Los Angeles and Georgia datasets to test their transferability, and they were also compared to a traditional safety performance function (SPF) developed using negative binominal regression. The results show that all the three Bayesian optimized machine learning models have high predictive accuracy and acceptable transferability, and the MLP model is a little better than the SVR and RF models. In addition, all three models outperform the traditional SPF with regard to predictive accuracy. The model sensitivity analysis also show that the traffic volume and shockwave area have positive effects on traffic conflicts, while the platoon ratio has negative effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊熊完成签到,获得积分10
刚刚
刚刚
1秒前
安的沛白完成签到,获得积分10
1秒前
CipherSage应助terminus采纳,获得10
2秒前
4秒前
汉堡包应助年轻的大炮采纳,获得10
5秒前
yyfdqms完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
222发布了新的文献求助10
5秒前
亿亿亿亿完成签到,获得积分20
5秒前
nefu biology发布了新的文献求助10
6秒前
所所应助武雨寒采纳,获得10
7秒前
dong应助探寻采纳,获得10
7秒前
7秒前
8秒前
8秒前
yiyi完成签到,获得积分10
9秒前
9秒前
9秒前
IceyCNZ发布了新的文献求助20
9秒前
10秒前
11秒前
潇涯完成签到,获得积分10
11秒前
朱晓宇发布了新的文献求助10
11秒前
空白发布了新的文献求助10
11秒前
159发布了新的文献求助10
12秒前
12秒前
12秒前
nefu biology完成签到,获得积分10
12秒前
Richardxuuu发布了新的文献求助10
13秒前
13秒前
WQ发布了新的文献求助10
13秒前
啊啊发布了新的文献求助10
14秒前
SYLH应助222采纳,获得10
15秒前
16秒前
北城发布了新的文献求助10
16秒前
owo666ooo完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426