Traffic Conflict Prediction at Signal Cycle Level Using Bayesian Optimized Machine Learning Approaches

支持向量机 计算机科学 贝叶斯概率 超参数 机器学习 随机森林 人工智能 贝叶斯定理 灵敏度(控制系统) 朴素贝叶斯分类器 工程类 控制(管理) 电子工程
作者
Lai Zheng,Zhenlin Hu,Tarek Sayed
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (5): 183-195 被引量:4
标识
DOI:10.1177/03611981221128812
摘要

This study develops non-parametric models to predict traffic conflicts at signalized intersections at the signal cycle level using machine learning approaches. Three different datasets were collected, one from Surrey, Canada, and the other two from Los Angeles and Georgia, U.S.A. From the datasets, traffic conflicts measured by modified time to collision and traffic parameters such as traffic volume, shockwave area, platoon ratio, and shockwave speed were extracted. Multilayer perceptron (MLP), support vector regression (SVR), and random forest (RF) models were developed based on the Surrey dataset, and the Bayesian optimization approach was adopted to optimize the model hyperparameters. The optimized models were applied to the Los Angeles and Georgia datasets to test their transferability, and they were also compared to a traditional safety performance function (SPF) developed using negative binominal regression. The results show that all the three Bayesian optimized machine learning models have high predictive accuracy and acceptable transferability, and the MLP model is a little better than the SVR and RF models. In addition, all three models outperform the traditional SPF with regard to predictive accuracy. The model sensitivity analysis also show that the traffic volume and shockwave area have positive effects on traffic conflicts, while the platoon ratio has negative effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野忆文完成签到,获得积分10
1秒前
李爱国应助Yesyes采纳,获得30
1秒前
rui发布了新的文献求助10
1秒前
2秒前
马尔斯完成签到,获得积分10
3秒前
yeeeee完成签到 ,获得积分10
3秒前
4秒前
安恋雨发布了新的文献求助20
5秒前
一年发3篇JACS完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
6秒前
8秒前
linelolo完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
清欢完成签到 ,获得积分10
12秒前
归尘发布了新的文献求助10
13秒前
13秒前
李健的小迷弟应助俗丨采纳,获得10
13秒前
15秒前
15秒前
昭昭发布了新的文献求助10
15秒前
xiaoyao发布了新的文献求助10
16秒前
YHHHH完成签到 ,获得积分10
16秒前
16秒前
Owen应助MQ采纳,获得10
16秒前
Gzl完成签到,获得积分10
17秒前
18秒前
Sevendesu完成签到,获得积分10
19秒前
领导范儿应助淡然采纳,获得10
20秒前
时来运转发布了新的文献求助10
21秒前
21秒前
xf发布了新的文献求助10
21秒前
研友_850EYZ发布了新的文献求助40
22秒前
星辰大海应助小伙子采纳,获得10
22秒前
22秒前
123456发布了新的文献求助10
22秒前
浮生若梦完成签到,获得积分10
23秒前
淡定的水彤完成签到,获得积分10
24秒前
沉寂的希望完成签到,获得积分20
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969574
求助须知:如何正确求助?哪些是违规求助? 3514435
关于积分的说明 11173986
捐赠科研通 3249755
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804844