阴极
材料科学
阳极
电解质
电镀(地质)
降级(电信)
金属
化学工程
电镀
沉积(地质)
基质(水族馆)
锌
纳米技术
冶金
电极
化学
电气工程
物理化学
图层(电子)
工程类
古生物学
沉积物
地质学
海洋学
生物
地球物理学
作者
Zehao Zhu,Hongrun Jin,Kefeng Xie,Simin Dai,Yongxin Luo,Bei Qi,Zidong Wang,Xinyan Zhuang,Kaisi Liu,Bin Hu,Liang Huang,Jun Zhou
出处
期刊:Small
[Wiley]
日期:2022-10-26
卷期号:18 (49)
被引量:26
标识
DOI:10.1002/smll.202204713
摘要
The modification of metallic Zn anode contributes to solving the cycling issue of Zn-ion batteries (ZIBs) by restraining the dendrite growth and side reactions. In this regard, modulating (002) Zn is an effective way to prolong the lifespan of ZIBs with a parallel arrangement of Zn deposition. Herein, the authors propose to add trace amounts of Zn(BF4 )2 additive in 3 M ZnSO4 to promote in-plane Zn deposition by forming a BF4- -[Zn(H2 O)6 ]2+ -[Zn(BF4 )3 ]- transfer process and specifically functioning on (002) facets. In this way, the optimized electrolyte highly boosts the cycling stability of Zn anodes with a long lifespan at 34.2% Zn utilization (500 h/10 mA cm-2 ) and 51.3% Zn utilization (360 h/10 mA cm-2 ; 834 h/1 mA cm-2 ). Moreover, the electroplated Zn on Cu substrate exhibits a competitive cumulative plating capacity (CPC) of 2.87 Ah cm-2 under harsh conditions. The assembled Zn|(NH4 )2 V6 O16 ·3H2 O full cells with a high cathode loading of 29.12 mg cm-2 also realizes almost no capacity degradation even after 2000 cycles at 2 A g-1 . With this cost-effective strategy, it is promising to push the development of aqueous ZIBs as well as provide inspiration for metal anode optimization in other energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI