NIR spectroscopy combined with 1D-convolutional neural network for breast cancerization analysis and diagnosis

模式识别(心理学) 卷积神经网络 人工智能 乳腺癌 线性判别分析 近红外光谱 计算机科学 癌症 内科学 医学 生物 神经科学
作者
Hui Shang,Linwei Shang,Jinjin Wu,Zhibing Xu,Su-Wei Zhou,Zihan Wang,Huijie Wang,Jianhua Yin
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:287: 121990-121990 被引量:21
标识
DOI:10.1016/j.saa.2022.121990
摘要

Near-infrared (NIR) spectroscopy with deep penetration can characterize the composition of biological tissue based on the vibration of the X-H group in a rapid and high-specificity way. Deep learning is proven helpful for rapid and automatic identification of tissue cancerization. In this study, NIR spectroscopic detection equipped with the lab-made NIR probe was performed to in situ explore the change of molecular compositions in breast cancerization, where the diffused NIR spectra were efficiently collected at different locations of cancerous and paracancerous areas. The breast cancerous-paracancerous discriminant model was established based on one-dimensional convolutional neural network (1D-CNN). By optimizing the structure of the neural network, the high classification accuracy (94.67%), recall/sensitivity (95.33%), specificity (94.00%), precision (94.08%) and F1 score (0.9470) were achieved, showing the better discrimination ability and reliability than the K-Nearest Neighbor (KNN, 88.34%, 98.21%, 76.11%, 83.59%, 0.9031) and Fisher Discriminant Analysis (FDA, 90.00%, 96.43%, 81.82%, 87.10%, 0.9153) methods. The experimental results indicate that the application of 1D-CNN can discriminate the cancerous and paracancerous breast tissues, and provide an intelligent method for clinical locating, diagnosis and treatment of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助cece采纳,获得10
刚刚
小红书求接接接接一篇完成签到,获得积分10
刚刚
3秒前
3秒前
元煜祺完成签到,获得积分10
4秒前
5秒前
心想事成完成签到 ,获得积分10
7秒前
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
润恩完成签到,获得积分10
7秒前
ceeray23应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
Rixxed发布了新的文献求助10
8秒前
吴大语完成签到 ,获得积分10
10秒前
FF完成签到,获得积分10
10秒前
Silentjj84发布了新的文献求助10
11秒前
12秒前
mf关闭了mf文献求助
12秒前
pray_LEI完成签到,获得积分10
12秒前
灵魂发布了新的文献求助10
13秒前
14秒前
星辰大海应助火星上友易采纳,获得10
14秒前
花与爱发布了新的文献求助10
16秒前
小Q啊啾发布了新的文献求助10
16秒前
Ava应助灵魂采纳,获得10
17秒前
Tao完成签到,获得积分20
18秒前
19秒前
那小子真帅完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
欢呼鼠标发布了新的文献求助10
22秒前
yipyip发布了新的文献求助20
22秒前
高大靖仇完成签到,获得积分10
22秒前
colin完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951079
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082339
捐赠科研通 3226915
什么是DOI,文献DOI怎么找? 1784061
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801052