A Feature-Based Robust Method for Abnormal Contracts Detection in Ethereum Blockchain

计算机科学 过度拟合 智能合约 块链 数据库事务 分类器(UML) 人工智能 机器学习 Boosting(机器学习) 操作码 数据挖掘 梯度升压 多数决原则 随机森林 计算机安全 数据库 人工神经网络 计算机硬件
作者
Ali Aljofey,Abdur Rasool,Qingshan Jiang,Qiang Qu
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (18): 2937-2937 被引量:17
标识
DOI:10.3390/electronics11182937
摘要

Blockchain technology has allowed many abnormal schemes to hide behind smart contracts. This causes serious financial losses, which adversely affects the blockchain. Machine learning technology has mainly been utilized to enable automatic detection of abnormal contract accounts in recent years. In spite of this, previous machine learning methods have suffered from a number of disadvantages: first, it is extremely difficult to identify features that enable accurate detection of abnormal contracts, and based on these features, statistical analysis is also ineffective. Second, they ignore the imbalances and repeatability of smart contract accounts, which often results in overfitting of the model. In this paper, we propose a data-driven robust method for detecting abnormal contract accounts over the Ethereum Blockchain. This method comprises hybrid features set by integrating opcode n-grams, transaction features, and term frequency-inverse document frequency source code features to train an ensemble classifier. The extra-trees and gradient boosting algorithms based on weighted soft voting are used to create an ensemble classifier that balances the weaknesses of individual classifiers in a given dataset. The abnormal and normal contract data are collected by analyzing the open source etherscan.io, and the problem of the imbalanced dataset is solved by performing the adaptive synthetic sampling. The empirical results demonstrate that the proposed individual feature sets are useful for detecting abnormal contract accounts. Meanwhile, combining all the features enhances the detection of abnormal contracts with significant accuracy. The experimental and comparative results show that the proposed method can distinguish abnormal contract accounts for the data-driven security of blockchain Ethereum with satisfactory performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋静发布了新的文献求助30
2秒前
3秒前
Yuan完成签到,获得积分10
6秒前
wanci应助小张同学采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
CHENG完成签到,获得积分10
8秒前
故事的小红花完成签到,获得积分10
8秒前
每天都要开心完成签到,获得积分10
9秒前
我是老大应助水菜泽子采纳,获得10
9秒前
希望天下0贩的0应助nick采纳,获得30
9秒前
liuda完成签到,获得积分10
10秒前
10秒前
奶黄包应助幽默翠桃采纳,获得10
11秒前
傻傻发布了新的文献求助10
11秒前
张张发布了新的文献求助30
12秒前
行舟完成签到 ,获得积分10
13秒前
文艺的金针菇完成签到 ,获得积分10
15秒前
bfr完成签到,获得积分10
15秒前
16秒前
卡比兽本兽完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
l玖应助紧张的毛衣采纳,获得10
19秒前
19秒前
Kevin发布了新的文献求助10
20秒前
刘一鸣发布了新的文献求助10
21秒前
咚咚咚完成签到,获得积分10
21秒前
22秒前
22秒前
nick发布了新的文献求助30
23秒前
科研張发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993