Redistributing interfacial charge density of Ni12P5/Ni3P via Fe doping for ultrafast urea oxidation catalysis at large current densities

催化作用 电流密度 塔菲尔方程 电解 材料科学 尿素 兴奋剂 电化学 化学 无机化学 化学工程 物理化学 电极 光电子学 有机化学 工程类 物理 电解质 量子力学
作者
Xiujuan Xu,Canhui Zhang,Jinyang Li,Hu Liu,Ge Su,Zhicheng Shi,Minghua Huang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:452: 139362-139362 被引量:41
标识
DOI:10.1016/j.cej.2022.139362
摘要

Large-scale industrial application of urea electrolysis has prompted one to explore inexpensive and efficient urea oxidation reaction (UOR) catalysts that can achieve large current densities (≥500 mA cm−2) at relatively low potentials. In response, for the first time the robust UOR catalysts are developed via in-situ construction of the Fe-doped Ni12P5/Ni3P heterojunction nanosheets on the macroporous 3D NiFe foam skeleton (denoted as Fe-(Ni12P5/Ni3P)). The introduction of Fe element can not only strengthen the interfacial electric field and induce the spontaneous charge redistribution for heterogeneous Ni12P5/Ni3P, but also effectively lower the reaction energy barrier during stepwise UOR process. Benefiting from the unique ultra-thin nanosheets and the optimized electronic structure, the well-designed Fe-(Ni12P5/Ni3P) possesses more exposed active sites and faster electron and mass transfer, thus exhibiting superior catalytic UOR activity. Encouragingly, the Fe-(Ni12P5/Ni3P) can deliver the industrial-level current density of 800 mA cm−2 just at 1.4 V as well as a splendid Tafel slope of 28.2 mV dec−1. This catalyst also manifests remarkable durability under high current densities. As a consequence, our work opens up a brand-new-path in rational design of excellent UOR catalysts with high activity and stability to enable energy-saving electrolytic hydrogen production on industrial scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
庐陵流川枫完成签到,获得积分10
1秒前
Orange应助Xiaoyan采纳,获得10
2秒前
岑晓冰完成签到 ,获得积分10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
zcl应助科研通管家采纳,获得30
3秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助hudiefeifei306采纳,获得10
4秒前
pcr163应助科研通管家采纳,获得100
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
充电宝应助难过的翠桃采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
行毅文发布了新的文献求助10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
浪子应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4947452
求助须知:如何正确求助?哪些是违规求助? 4211229
关于积分的说明 13093565
捐赠科研通 3992434
什么是DOI,文献DOI怎么找? 2185471
邀请新用户注册赠送积分活动 1200855
关于科研通互助平台的介绍 1114351