锥束ct
导航系统
植入
校准
计算机科学
牙种植体
标准差
医学
计算机辅助手术
计算机视觉
人工智能
计算机断层摄影术
外科
数学
统计
作者
Gábor Tamás Pintér,Roland Decker,Gábor Szénási,Péter Barabás,Tamás Húszár
摘要
In modern implantology, the application of surgical navigation systems is becoming increasingly important. In addition to static surgical navigation methods, a guide-independent dynamic navigation implant placement procedure is becoming more widespread. The procedure is based on computer-guided dental implant placement utilizing optical control. This work aims to demonstrate the technical steps of a new dynamic computer-aided implant surgery (DCAIS) system (design, calibration, surgery) and check the accuracy of the results. Based on cone-beam computed tomography (CBCT) scans, the exact positions of implants are determined with dedicated software. The first step of the operation is the calibration of the navigation system, which can be performed in two ways: 1) based on CBCT images taken with a marker or 2) based on CBCT images without markers. Implants are inserted with the aid of real-time navigation according to the preoperative plans. The accuracy of the interventions can be evaluated based on postoperative CBCT images. The preoperative images containing the planned positions of the implants and postoperative CBCT images were compared based on the angulation (degree), platform, and apical deviation (mm) of the implants. To evaluate the data, we calculated the standard deviation (SD), mean, and standard error of the mean (SEM) of deviations within planned and performed implant positions. Differences between the two calibration methods were compared based on this data. Based on the interventions performed so far, the use of DCAIS allows for high-precision implant placement. A calibration system that does not require labeled CBCT recording allows for surgical intervention with similar accuracy as a system that uses labeling. The accuracy of the intervention can be improved by training.
科研通智能强力驱动
Strongly Powered by AbleSci AI