Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis

医学 溃疡性结肠炎 人工智能 内科学 胃肠病学 疾病 计算机科学
作者
Yanyun Fan,Ruochen Mu,Hongzhi Xu,Chenxi Xie,Yinghao Zhang,Lupeng Liu,Lin Wang,Huaxiu Shi,Yiqun Hu,Jianlin Ren,Jing Qin,Liansheng Wang,Shuntian Cai
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:97 (2): 335-346 被引量:25
标识
DOI:10.1016/j.gie.2022.08.015
摘要

Endoscopy is increasingly performed for evaluating patients with ulcerative colitis (UC). However, its diagnostic accuracy is largely affected by the subjectivity of endoscopists' experience and scoring methods, and scoring of selected endoscopic images cannot reflect the inflammation of the entire intestine. We aimed to develop an automatic scoring system using deep-learning technology for consistent and objective scoring of endoscopic images and full-length endoscopic videos of patients with UC.We collected 5875 endoscopic images and 20 full-length videos from 332 patients with UC who underwent colonoscopy between January 2017 and March 2021. We trained the artificial intelligence (AI) scoring system using these images, which was then used for full-length video scoring. To more accurately assess and visualize the full-length intestinal inflammation, we divided the large intestine into a fixed number of "areas" (cecum, 20; transverse colon, 20; descending colon, 20; sigmoid colon, 15; rectum, 10). The scoring system automatically scored inflammatory severity of 85 areas from every video and generated a visualized result of full-length intestinal inflammatory activity.Compared with endoscopist scoring, the trained convolutional neural network achieved 86.54% accuracy in the Mayo-scored task, whereas the kappa coefficient was .813 (95% confidence interval [CI], .782-.844). The metrics of the Ulcerative Colitis Endoscopic Index of Severity-scored task were encouraging, with accuracies of 90.7%, 84.6%, and 77.7% and kappa coefficients of .822 (95% CI, .788-.855), .784 (95% CI, .744-.823), and .702 (95% CI, .612-.793) for vascular pattern, erosions and ulcers, and bleeding, respectively. The AI scoring system predicted each bowel segment's score and displayed distribution of inflammatory activity in the entire large intestine using a 2-dimensional colorized image.We established a novel deep learning-based scoring system to evaluate endoscopic images from patients with UC, which can also accurately describe the severity and distribution of inflammatory activity through full-length intestinal endoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
chen完成签到 ,获得积分10
1秒前
月亮完成签到,获得积分10
2秒前
希望天下0贩的0应助dominate采纳,获得10
2秒前
2秒前
orixero应助小黄采纳,获得30
3秒前
ljz910005完成签到,获得积分10
3秒前
海湾电报发布了新的文献求助10
3秒前
领导范儿应助zhangzhang1145采纳,获得10
3秒前
sam完成签到,获得积分10
4秒前
flyabc发布了新的文献求助10
4秒前
4秒前
天真彩虹完成签到 ,获得积分10
4秒前
科研小白完成签到,获得积分10
5秒前
5秒前
6秒前
Lucas应助CIOOICO1采纳,获得10
6秒前
SciGPT应助张同学采纳,获得10
6秒前
mjj发布了新的文献求助10
6秒前
枫asaki发布了新的文献求助10
7秒前
8秒前
共享精神应助椒盐鲨鱼皮采纳,获得10
8秒前
田様应助sajelsch采纳,获得10
8秒前
NexusExplorer应助SYC采纳,获得10
9秒前
9秒前
10秒前
猪猪hero发布了新的文献求助10
10秒前
11秒前
11秒前
ONION完成签到,获得积分10
11秒前
flyabc完成签到,获得积分10
11秒前
12秒前
好幸运完成签到,获得积分10
12秒前
窦逗豆完成签到,获得积分10
12秒前
呢喃Dora完成签到,获得积分10
14秒前
亮亮发布了新的文献求助10
14秒前
一沙发布了新的文献求助10
14秒前
yueyangyin发布了新的文献求助10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034