Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis

医学 溃疡性结肠炎 人工智能 内科学 胃肠病学 疾病 计算机科学
作者
Yanyun Fan,Ruochen Mu,Hongzhi Xu,Chenxi Xie,Yinghao Zhang,Lupeng Liu,Lin Wang,Huaxiu Shi,Yiqun Hu,Jianlin Ren,Jing Qin,Liansheng Wang,Shuntian Cai
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:97 (2): 335-346 被引量:25
标识
DOI:10.1016/j.gie.2022.08.015
摘要

Endoscopy is increasingly performed for evaluating patients with ulcerative colitis (UC). However, its diagnostic accuracy is largely affected by the subjectivity of endoscopists' experience and scoring methods, and scoring of selected endoscopic images cannot reflect the inflammation of the entire intestine. We aimed to develop an automatic scoring system using deep-learning technology for consistent and objective scoring of endoscopic images and full-length endoscopic videos of patients with UC.We collected 5875 endoscopic images and 20 full-length videos from 332 patients with UC who underwent colonoscopy between January 2017 and March 2021. We trained the artificial intelligence (AI) scoring system using these images, which was then used for full-length video scoring. To more accurately assess and visualize the full-length intestinal inflammation, we divided the large intestine into a fixed number of "areas" (cecum, 20; transverse colon, 20; descending colon, 20; sigmoid colon, 15; rectum, 10). The scoring system automatically scored inflammatory severity of 85 areas from every video and generated a visualized result of full-length intestinal inflammatory activity.Compared with endoscopist scoring, the trained convolutional neural network achieved 86.54% accuracy in the Mayo-scored task, whereas the kappa coefficient was .813 (95% confidence interval [CI], .782-.844). The metrics of the Ulcerative Colitis Endoscopic Index of Severity-scored task were encouraging, with accuracies of 90.7%, 84.6%, and 77.7% and kappa coefficients of .822 (95% CI, .788-.855), .784 (95% CI, .744-.823), and .702 (95% CI, .612-.793) for vascular pattern, erosions and ulcers, and bleeding, respectively. The AI scoring system predicted each bowel segment's score and displayed distribution of inflammatory activity in the entire large intestine using a 2-dimensional colorized image.We established a novel deep learning-based scoring system to evaluate endoscopic images from patients with UC, which can also accurately describe the severity and distribution of inflammatory activity through full-length intestinal endoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
STH完成签到,获得积分10
1秒前
小二郎应助伶俐从筠采纳,获得10
1秒前
王淳完成签到 ,获得积分10
1秒前
感动水杯完成签到 ,获得积分10
2秒前
mix关闭了mix文献求助
2秒前
鲤鱼青雪发布了新的文献求助10
2秒前
daheeeee完成签到,获得积分10
2秒前
LIXI发布了新的文献求助10
2秒前
Violet完成签到,获得积分10
3秒前
超级小刺猬完成签到 ,获得积分10
3秒前
忧郁的风华完成签到,获得积分10
3秒前
licheng完成签到,获得积分10
3秒前
jun完成签到 ,获得积分10
4秒前
4秒前
Chan完成签到,获得积分10
4秒前
花花公子完成签到,获得积分10
5秒前
文与武完成签到 ,获得积分10
5秒前
狮子卷卷完成签到,获得积分10
5秒前
lulu完成签到 ,获得积分10
6秒前
Lucas应助沉舟采纳,获得10
7秒前
CNJX完成签到,获得积分10
7秒前
夏沫完成签到,获得积分10
8秒前
Verdigris完成签到,获得积分10
8秒前
...完成签到,获得积分10
8秒前
霸气的断缘完成签到,获得积分10
8秒前
Akim应助赵赵采纳,获得10
9秒前
10秒前
lilei完成签到,获得积分10
10秒前
数学情缘完成签到,获得积分10
10秒前
11秒前
我爱磕盐完成签到,获得积分10
12秒前
LuX完成签到,获得积分10
12秒前
LIXI完成签到,获得积分20
12秒前
13秒前
鲤鱼青雪完成签到,获得积分10
14秒前
嘎嘎完成签到 ,获得积分10
14秒前
LQ发布了新的文献求助10
14秒前
lilala完成签到,获得积分20
14秒前
维克托完成签到 ,获得积分10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729275
求助须知:如何正确求助?哪些是违规求助? 3274478
关于积分的说明 9985576
捐赠科研通 2989636
什么是DOI,文献DOI怎么找? 1640686
邀请新用户注册赠送积分活动 779292
科研通“疑难数据库(出版商)”最低求助积分说明 748179