Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis

医学 溃疡性结肠炎 人工智能 内科学 胃肠病学 疾病 计算机科学
作者
Yanyun Fan,Ruochen Mu,Hongzhi Xu,Chenxi Xie,Yinghao Zhang,Lupeng Liu,Lin Wang,Huaxiu Shi,Yiqun Hu,Jianlin Ren,Jing Qin,Liansheng Wang,Shuntian Cai
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:97 (2): 335-346 被引量:33
标识
DOI:10.1016/j.gie.2022.08.015
摘要

Endoscopy is increasingly performed for evaluating patients with ulcerative colitis (UC). However, its diagnostic accuracy is largely affected by the subjectivity of endoscopists' experience and scoring methods, and scoring of selected endoscopic images cannot reflect the inflammation of the entire intestine. We aimed to develop an automatic scoring system using deep-learning technology for consistent and objective scoring of endoscopic images and full-length endoscopic videos of patients with UC.We collected 5875 endoscopic images and 20 full-length videos from 332 patients with UC who underwent colonoscopy between January 2017 and March 2021. We trained the artificial intelligence (AI) scoring system using these images, which was then used for full-length video scoring. To more accurately assess and visualize the full-length intestinal inflammation, we divided the large intestine into a fixed number of "areas" (cecum, 20; transverse colon, 20; descending colon, 20; sigmoid colon, 15; rectum, 10). The scoring system automatically scored inflammatory severity of 85 areas from every video and generated a visualized result of full-length intestinal inflammatory activity.Compared with endoscopist scoring, the trained convolutional neural network achieved 86.54% accuracy in the Mayo-scored task, whereas the kappa coefficient was .813 (95% confidence interval [CI], .782-.844). The metrics of the Ulcerative Colitis Endoscopic Index of Severity-scored task were encouraging, with accuracies of 90.7%, 84.6%, and 77.7% and kappa coefficients of .822 (95% CI, .788-.855), .784 (95% CI, .744-.823), and .702 (95% CI, .612-.793) for vascular pattern, erosions and ulcers, and bleeding, respectively. The AI scoring system predicted each bowel segment's score and displayed distribution of inflammatory activity in the entire large intestine using a 2-dimensional colorized image.We established a novel deep learning-based scoring system to evaluate endoscopic images from patients with UC, which can also accurately describe the severity and distribution of inflammatory activity through full-length intestinal endoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
陈陈陈发布了新的文献求助10
2秒前
3秒前
xiaoliu发布了新的文献求助10
3秒前
5秒前
5秒前
piggy发布了新的文献求助10
6秒前
6秒前
张北北完成签到,获得积分10
6秒前
liying发布了新的文献求助30
6秒前
昂莫达完成签到,获得积分10
6秒前
豆子发布了新的文献求助10
6秒前
LucyLi发布了新的文献求助10
7秒前
tcf发布了新的文献求助10
7秒前
jmy发布了新的文献求助30
7秒前
莱德完成签到,获得积分10
7秒前
8秒前
9秒前
傻呵呵发布了新的文献求助20
9秒前
9秒前
领导范儿应助淮山五加皮采纳,获得10
9秒前
9秒前
9秒前
李健应助沟通亿心采纳,获得10
9秒前
方方发布了新的文献求助10
10秒前
10秒前
田1986发布了新的文献求助10
10秒前
11秒前
11秒前
小管发布了新的文献求助10
12秒前
12秒前
13秒前
高子懿完成签到,获得积分10
13秒前
募股小完成签到,获得积分10
14秒前
ccyy完成签到,获得积分10
14秒前
马儿饿了要吃草完成签到,获得积分10
15秒前
顾年完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618686
求助须知:如何正确求助?哪些是违规求助? 4703697
关于积分的说明 14923247
捐赠科研通 4758321
什么是DOI,文献DOI怎么找? 2550231
邀请新用户注册赠送积分活动 1513010
关于科研通互助平台的介绍 1474379