Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis

医学 溃疡性结肠炎 结肠镜检查 直肠 降结肠 内窥镜检查 结肠炎 计分系统 横结肠 乙状结肠 人工智能 盲肠 置信区间 放射科 内科学 胃肠病学 疾病 结直肠癌 计算机科学 癌症
作者
Yanyun Fan,Ruochen Mu,Huimin Xu,Chenxi Xie,Yinghao Zhang,Lupeng Liu,Lin Wang,Huaxiu Shi,Yiqun Hu,Jing Ren,Jing Qin,Liansheng Wang,Shanshan Cai
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:97 (2): 335-346 被引量:7
标识
DOI:10.1016/j.gie.2022.08.015
摘要

Endoscopy is increasingly performed for evaluating patients with ulcerative colitis (UC). However, its diagnostic accuracy is largely affected by the subjectivity of endoscopists' experience and scoring methods, and scoring of selected endoscopic images cannot reflect the inflammation of the entire intestine. We aimed to develop an automatic scoring system using deep-learning technology for consistent and objective scoring of endoscopic images and full-length endoscopic videos of patients with UC.We collected 5875 endoscopic images and 20 full-length videos from 332 patients with UC who underwent colonoscopy between January 2017 and March 2021. We trained the artificial intelligence (AI) scoring system using these images, which was then used for full-length video scoring. To more accurately assess and visualize the full-length intestinal inflammation, we divided the large intestine into a fixed number of "areas" (cecum, 20; transverse colon, 20; descending colon, 20; sigmoid colon, 15; rectum, 10). The scoring system automatically scored inflammatory severity of 85 areas from every video and generated a visualized result of full-length intestinal inflammatory activity.Compared with endoscopist scoring, the trained convolutional neural network achieved 86.54% accuracy in the Mayo-scored task, whereas the kappa coefficient was .813 (95% confidence interval [CI], .782-.844). The metrics of the Ulcerative Colitis Endoscopic Index of Severity-scored task were encouraging, with accuracies of 90.7%, 84.6%, and 77.7% and kappa coefficients of .822 (95% CI, .788-.855), .784 (95% CI, .744-.823), and .702 (95% CI, .612-.793) for vascular pattern, erosions and ulcers, and bleeding, respectively. The AI scoring system predicted each bowel segment's score and displayed distribution of inflammatory activity in the entire large intestine using a 2-dimensional colorized image.We established a novel deep learning-based scoring system to evaluate endoscopic images from patients with UC, which can also accurately describe the severity and distribution of inflammatory activity through full-length intestinal endoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
不安青牛应助风趣的碧琴采纳,获得10
10秒前
地西泮发布了新的文献求助10
11秒前
jia完成签到,获得积分10
11秒前
Alan完成签到 ,获得积分10
17秒前
苗条砖家发布了新的文献求助10
18秒前
CodeCraft应助勤奋的日记本采纳,获得10
18秒前
IBMffff应助开朗的柜子采纳,获得10
20秒前
21秒前
SciGPT应助无情念之采纳,获得10
23秒前
萧水白应助qiqi采纳,获得10
27秒前
老温完成签到,获得积分10
27秒前
liuHX完成签到,获得积分10
27秒前
充电宝应助ChenSSS采纳,获得10
36秒前
36秒前
现代的紫霜完成签到,获得积分10
38秒前
xxxp发布了新的文献求助30
39秒前
无情念之发布了新的文献求助10
40秒前
showitt完成签到,获得积分10
41秒前
44秒前
思源应助无情念之采纳,获得10
47秒前
Tracy发布了新的文献求助10
47秒前
66666发布了新的文献求助10
55秒前
糊涂涂完成签到,获得积分10
55秒前
xxxp完成签到,获得积分10
59秒前
Anan应助Everglow采纳,获得20
1分钟前
1分钟前
提速狗发布了新的文献求助200
1分钟前
at发布了新的文献求助10
1分钟前
Orange应助优美访文采纳,获得10
1分钟前
1分钟前
完美世界应助fumingliang采纳,获得10
1分钟前
Qing完成签到,获得积分10
1分钟前
xxw完成签到,获得积分10
1分钟前
1分钟前
Orange应助寂寞的小土鸡采纳,获得10
1分钟前
Akim应助shiwg采纳,获得10
1分钟前
1分钟前
yoyo完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340523
求助须知:如何正确求助?哪些是违规求助? 2968522
关于积分的说明 8634035
捐赠科研通 2648059
什么是DOI,文献DOI怎么找? 1449976
科研通“疑难数据库(出版商)”最低求助积分说明 671616
邀请新用户注册赠送积分活动 660663