已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis

医学 溃疡性结肠炎 人工智能 内科学 胃肠病学 疾病 计算机科学
作者
Yanyun Fan,Ruochen Mu,Hongzhi Xu,Chenxi Xie,Yinghao Zhang,Lupeng Liu,Lin Wang,Huaxiu Shi,Yiqun Hu,Jianlin Ren,Jing Qin,Liansheng Wang,Shuntian Cai
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:97 (2): 335-346 被引量:33
标识
DOI:10.1016/j.gie.2022.08.015
摘要

Endoscopy is increasingly performed for evaluating patients with ulcerative colitis (UC). However, its diagnostic accuracy is largely affected by the subjectivity of endoscopists' experience and scoring methods, and scoring of selected endoscopic images cannot reflect the inflammation of the entire intestine. We aimed to develop an automatic scoring system using deep-learning technology for consistent and objective scoring of endoscopic images and full-length endoscopic videos of patients with UC.We collected 5875 endoscopic images and 20 full-length videos from 332 patients with UC who underwent colonoscopy between January 2017 and March 2021. We trained the artificial intelligence (AI) scoring system using these images, which was then used for full-length video scoring. To more accurately assess and visualize the full-length intestinal inflammation, we divided the large intestine into a fixed number of "areas" (cecum, 20; transverse colon, 20; descending colon, 20; sigmoid colon, 15; rectum, 10). The scoring system automatically scored inflammatory severity of 85 areas from every video and generated a visualized result of full-length intestinal inflammatory activity.Compared with endoscopist scoring, the trained convolutional neural network achieved 86.54% accuracy in the Mayo-scored task, whereas the kappa coefficient was .813 (95% confidence interval [CI], .782-.844). The metrics of the Ulcerative Colitis Endoscopic Index of Severity-scored task were encouraging, with accuracies of 90.7%, 84.6%, and 77.7% and kappa coefficients of .822 (95% CI, .788-.855), .784 (95% CI, .744-.823), and .702 (95% CI, .612-.793) for vascular pattern, erosions and ulcers, and bleeding, respectively. The AI scoring system predicted each bowel segment's score and displayed distribution of inflammatory activity in the entire large intestine using a 2-dimensional colorized image.We established a novel deep learning-based scoring system to evaluate endoscopic images from patients with UC, which can also accurately describe the severity and distribution of inflammatory activity through full-length intestinal endoscopic videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学有所成完成签到,获得积分10
刚刚
雪雪儿完成签到,获得积分10
刚刚
wlscj应助jcy采纳,获得20
2秒前
3秒前
Echo发布了新的文献求助10
3秒前
4秒前
小二郎应助yunzheng采纳,获得10
4秒前
Yulanda完成签到,获得积分10
5秒前
xxx完成签到,获得积分10
6秒前
liulu完成签到 ,获得积分10
10秒前
王富贵发布了新的文献求助10
11秒前
11秒前
rainbowbaby发布了新的文献求助10
12秒前
12秒前
Z小姐完成签到 ,获得积分10
12秒前
FashionBoy应助279采纳,获得10
12秒前
英勇的梨愁完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
诚心的凛发布了新的文献求助10
15秒前
Ibuprofen发布了新的文献求助10
17秒前
4114发布了新的文献求助10
17秒前
大个应助zzg采纳,获得10
18秒前
18秒前
阿泽完成签到,获得积分10
18秒前
wx完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
yunzheng发布了新的文献求助10
22秒前
25秒前
华仔应助搞怪的紫雪采纳,获得10
26秒前
张静完成签到 ,获得积分10
27秒前
27秒前
领导范儿应助Bless采纳,获得30
28秒前
28秒前
我是老大应助4114采纳,获得10
28秒前
28秒前
浮游应助醒醒采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356