Tailoring Gradient Methods for Differentially-Private Distributed Optimization

差别隐私 计算机科学 最优化问题 趋同(经济学) 数学优化 水准点(测量) 网络拓扑 理论计算机科学 算法 数学 大地测量学 经济增长 操作系统 经济 地理
作者
Yongqiang Wang,Angelia Nedic
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tac.2023.3272968
摘要

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous $\epsilon$ -differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慕青应助可爱的海莲采纳,获得10
1秒前
蔡勇强发布了新的文献求助10
1秒前
1秒前
阿七完成签到,获得积分20
2秒前
2秒前
呼啦啦完成签到 ,获得积分10
2秒前
3秒前
大哈鱼完成签到,获得积分20
3秒前
emmm发布了新的文献求助10
3秒前
3秒前
党阳阳完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
我真找不到完成签到,获得积分0
5秒前
活力书包完成签到 ,获得积分10
5秒前
白云完成签到,获得积分10
5秒前
小二郎应助lin采纳,获得10
5秒前
小二郎应助何安采纳,获得10
5秒前
wanci应助Cindy采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
汉堡包应助liuyingjuan829采纳,获得10
7秒前
xuan发布了新的文献求助10
7秒前
拾柒发布了新的文献求助10
7秒前
feli完成签到,获得积分10
8秒前
朱迪完成签到 ,获得积分10
9秒前
英俊的铭应助Jerrie采纳,获得10
9秒前
我爱高数完成签到,获得积分10
10秒前
实验室应助感动澜采纳,获得30
10秒前
Liens发布了新的文献求助10
11秒前
whj发布了新的文献求助10
11秒前
11秒前
孤央完成签到 ,获得积分10
11秒前
11秒前
YY完成签到 ,获得积分10
11秒前
迟山完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836