Tailoring Gradient Methods for Differentially-Private Distributed Optimization

差别隐私 计算机科学 最优化问题 趋同(经济学) 数学优化 水准点(测量) 网络拓扑 理论计算机科学 算法 数学 大地测量学 经济增长 操作系统 经济 地理
作者
Yongqiang Wang,Angelia Nedic
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tac.2023.3272968
摘要

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous $\epsilon$ -differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
夏天完成签到,获得积分10
1秒前
科研通AI2S应助小鲤鱼本鱼采纳,获得20
4秒前
小刘爱科研完成签到,获得积分10
7秒前
易安发布了新的文献求助20
10秒前
小迷糊完成签到 ,获得积分10
10秒前
月夕完成签到 ,获得积分10
10秒前
只爱三十四画完成签到,获得积分10
12秒前
笨鸟先飞发布了新的文献求助10
13秒前
刘成完成签到,获得积分10
17秒前
mike2012完成签到 ,获得积分10
17秒前
lilac完成签到,获得积分10
18秒前
七子完成签到,获得积分10
21秒前
淡淡的宝莹完成签到,获得积分10
22秒前
zzx396完成签到,获得积分0
23秒前
23秒前
南桥枝完成签到 ,获得积分10
23秒前
LiSiyi完成签到 ,获得积分10
26秒前
Muhi完成签到,获得积分10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
27秒前
momo应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
南宫应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
1111111111应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
正己化人应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
Hanoi347应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
吕健应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
墨痕mohen完成签到,获得积分0
28秒前
福福发布了新的文献求助10
28秒前
大脸猫完成签到 ,获得积分10
33秒前
学术牛马完成签到,获得积分10
37秒前
thchiang完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563