已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tailoring Gradient Methods for Differentially-Private Distributed Optimization

差别隐私 计算机科学 最优化问题 趋同(经济学) 数学优化 水准点(测量) 网络拓扑 理论计算机科学 算法 数学 大地测量学 经济增长 操作系统 经济 地理
作者
Yongqiang Wang,Angelia Nedic
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tac.2023.3272968
摘要

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous $\epsilon$ -differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Euuii完成签到 ,获得积分10
刚刚
标致断缘完成签到 ,获得积分10
3秒前
YKX完成签到,获得积分10
8秒前
桃花源的瓶起子完成签到 ,获得积分10
10秒前
bkagyin应助ayw采纳,获得10
10秒前
12秒前
己凡发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
16秒前
烟花应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
17秒前
香蕉觅云应助niuniu采纳,获得10
18秒前
19秒前
19秒前
sirius发布了新的文献求助10
23秒前
25秒前
罗皮特完成签到,获得积分10
26秒前
28秒前
niuniu发布了新的文献求助10
30秒前
科研通AI5应助sirius采纳,获得10
31秒前
31秒前
31秒前
orixero应助hahah采纳,获得10
32秒前
Zcl发布了新的文献求助30
32秒前
所所应助wop111采纳,获得10
33秒前
36秒前
己凡发布了新的文献求助10
37秒前
wxnice完成签到,获得积分10
37秒前
niuniu完成签到,获得积分10
37秒前
香蕉觅云应助燚槿采纳,获得10
37秒前
科研通AI6应助慢慢采纳,获得10
39秒前
自由的梦露完成签到 ,获得积分10
39秒前
Jessica完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Modeling Ungrammaticality in Optimality Theory 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944455
求助须知:如何正确求助?哪些是违规求助? 4209377
关于积分的说明 13085135
捐赠科研通 3989004
什么是DOI,文献DOI怎么找? 2183965
邀请新用户注册赠送积分活动 1199322
关于科研通互助平台的介绍 1112234