Tailoring Gradient Methods for Differentially-Private Distributed Optimization

差别隐私 计算机科学 最优化问题 趋同(经济学) 数学优化 水准点(测量) 网络拓扑 理论计算机科学 算法 数学 大地测量学 经济增长 操作系统 经济 地理
作者
Yongqiang Wang,Angelia Nedic
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tac.2023.3272968
摘要

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous $\epsilon$ -differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清秋十三完成签到,获得积分10
1秒前
啦啦啦完成签到,获得积分10
1秒前
xliiii完成签到,获得积分10
1秒前
tytyty发布了新的文献求助10
2秒前
深情安青应助神勇冬莲采纳,获得10
3秒前
YM完成签到,获得积分10
3秒前
5秒前
甜美三娘完成签到,获得积分10
6秒前
汉堡包应助jellyfish采纳,获得20
6秒前
深情安青应助着急的无剑采纳,获得10
7秒前
苔苔完成签到,获得积分10
7秒前
所所应助儒雅的友瑶采纳,获得10
8秒前
陶醉雪青完成签到,获得积分10
8秒前
xcxc完成签到,获得积分10
8秒前
神勇冬莲完成签到,获得积分10
9秒前
传奇3应助元气少女岳云鹏采纳,获得10
9秒前
小猪完成签到,获得积分10
13秒前
英勇新烟完成签到,获得积分10
13秒前
herococa应助陶醉雪青采纳,获得10
14秒前
大力的飞莲完成签到,获得积分10
14秒前
CipherSage应助施凝采纳,获得10
15秒前
000发布了新的文献求助10
16秒前
17秒前
天天快乐应助科研小白采纳,获得10
18秒前
18秒前
SciGPT应助傲娇的曼香采纳,获得10
18秒前
共享精神应助kukudou2采纳,获得10
18秒前
领导范儿应助苔苔采纳,获得10
21秒前
FartKing发布了新的文献求助20
22秒前
LaTeXer应助FartKing采纳,获得30
25秒前
聪慧芷巧应助FartKing采纳,获得10
25秒前
科研老兵完成签到,获得积分10
26秒前
MnO2fff完成签到,获得积分10
28秒前
28秒前
施凝发布了新的文献求助10
33秒前
结实彤完成签到 ,获得积分10
34秒前
35秒前
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993