Tailoring Gradient Methods for Differentially-Private Distributed Optimization

差别隐私 计算机科学 最优化问题 趋同(经济学) 数学优化 水准点(测量) 网络拓扑 理论计算机科学 算法 数学 大地测量学 经济增长 操作系统 经济 地理
作者
Yongqiang Wang,Angelia Nedic
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tac.2023.3272968
摘要

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous $\epsilon$ -differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
带象关注了科研通微信公众号
刚刚
1秒前
3秒前
西红柿炒鸡蛋完成签到,获得积分20
3秒前
3秒前
朴素的山灵完成签到,获得积分10
4秒前
大模型应助米奥呜采纳,获得10
4秒前
5秒前
5秒前
Kenny完成签到,获得积分10
6秒前
6秒前
6秒前
小卓越完成签到 ,获得积分10
7秒前
共享精神应助2233采纳,获得10
8秒前
8秒前
bkagyin应助小冉采纳,获得10
10秒前
10秒前
10秒前
端庄谷南发布了新的文献求助10
11秒前
LY完成签到,获得积分20
12秒前
东东发布了新的文献求助10
12秒前
追寻的山晴应助clyhg采纳,获得10
12秒前
12秒前
13秒前
英姑应助xiaohang采纳,获得10
13秒前
打打应助kate采纳,获得10
14秒前
流浪发布了新的文献求助10
15秒前
嘟嘟图图发布了新的文献求助10
15秒前
公西傲蕾完成签到,获得积分10
15秒前
15秒前
gaw2008完成签到,获得积分10
16秒前
美好戒指完成签到,获得积分10
16秒前
wcj完成签到,获得积分10
16秒前
16秒前
18秒前
19秒前
dophin发布了新的文献求助10
19秒前
20秒前
落后的楼房完成签到,获得积分10
20秒前
20秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943