Tailoring Gradient Methods for Differentially-Private Distributed Optimization

差别隐私 计算机科学 最优化问题 趋同(经济学) 数学优化 水准点(测量) 网络拓扑 理论计算机科学 算法 数学 大地测量学 经济增长 操作系统 经济 地理
作者
Yongqiang Wang,Angelia Nedic
出处
期刊:IEEE Transactions on Automatic Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16
标识
DOI:10.1109/tac.2023.3272968
摘要

Decentralized optimization is gaining increased traction due to its widespread applications in large-scale machine learning and multi-agent systems. The same mechanism that enables its success, i.e., information sharing among participating agents, however, also leads to the disclosure of individual agents' private information, which is unacceptable when sensitive data are involved. As differential privacy is becoming a de facto standard for privacy preservation, recently results have emerged integrating differential privacy with distributed optimization. However, directly incorporating differential privacy design in existing distributed optimization approaches significantly compromises optimization accuracy. In this paper, we propose to redesign and tailor gradient methods for differentially-private distributed optimization, and propose two differential-privacy oriented gradient methods that can ensure both rigorous $\epsilon$ -differential privacy and optimality. The first algorithm is based on static-consensus based gradient methods, and the second algorithm is based on dynamic-consensus (gradient-tracking) based distributed optimization methods and, hence, is applicable to general directed interaction graph topologies. Both algorithms can simultaneously ensure almost sure convergence to an optimal solution and a finite privacy budget, even when the number of iterations goes to infinity. To our knowledge, this is the first time that both goals are achieved simultaneously. Numerical simulations using a distributed estimation problem and experimental results on a benchmark dataset confirm the effectiveness of the proposed approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
银鱼在游发布了新的文献求助10
刚刚
景C完成签到 ,获得积分10
刚刚
zxrzxr123完成签到,获得积分10
1秒前
1秒前
山野完成签到,获得积分10
2秒前
熊大完成签到,获得积分10
2秒前
libz发布了新的文献求助10
2秒前
上进完成签到 ,获得积分10
2秒前
3秒前
超级的千青完成签到 ,获得积分10
3秒前
foceman发布了新的文献求助10
3秒前
pure123完成签到,获得积分10
4秒前
专注的问寒应助xxxx采纳,获得20
4秒前
量子星尘发布了新的文献求助10
4秒前
luan完成签到,获得积分10
4秒前
Udo完成签到,获得积分10
4秒前
4秒前
4秒前
叶子完成签到,获得积分10
5秒前
5秒前
5秒前
俏皮绝山完成签到 ,获得积分10
5秒前
5秒前
小马甲应助Glitter采纳,获得10
5秒前
weiwei发布了新的文献求助10
5秒前
小二郎应助aaa采纳,获得10
5秒前
唠叨的富发布了新的文献求助10
6秒前
Meyako应助sky木槿采纳,获得10
6秒前
zwq完成签到,获得积分10
6秒前
6秒前
大模型应助ww采纳,获得30
6秒前
自然的曲奇完成签到 ,获得积分10
7秒前
7秒前
凌爽完成签到 ,获得积分10
7秒前
7秒前
Hello应助zhaojiachao采纳,获得10
7秒前
8秒前
8秒前
领导范儿应助清欢采纳,获得10
8秒前
科研通AI6应助fxyfxy采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721