厄米矩阵
共轭梯度法
数学
西尔维斯特矩阵
迭代法
基质(化学分析)
应用数学
厄米函数
对称矩阵
数学分析
算法
纯数学
物理
特征向量
多项式矩阵
矩阵多项式
多项式的
量子力学
复合材料
材料科学
作者
Naglaa M. El–Shazly,Mohamed Ramadan,Marwa H. El-Sharway
标识
DOI:10.1177/10775463221117861
摘要
The main purpose of this paper is to establish two relaxed gradient-based iterative (RGI) algorithms extending the Jacobi and Gauss–Seidel iterations for solving the generalized Sylvester-conjugate matrix equation [Formula: see text], over centro-symmetric, and centro-Hermitian matrices. It is shown that the iterative methods, respectively, converge to the centro-symmetric and centro-Hermitian solutions for any initial centro-symmetric and centro-Hermitian matrices. We report numerical tests to show the effectiveness of the proposed approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI