Transfer-Learning-Assisted Inverse Metasurface Design for 30% Data Savings

计算机科学 计算机工程 深度学习 反向 钥匙(锁) 领域(数学) 个性化 人工智能 理论计算机科学 工业工程 数学 几何学 计算机安全 工程类 万维网 纯数学
作者
Zhixiang Fan,Chao Qian,Yuetian Jia,Min Chen,Jie Zhang,Xingshuo Cui,Er‐Ping Li,Bin Zheng,Tong Cai,Hongsheng Chen
出处
期刊:Physical review applied [American Physical Society]
卷期号:18 (2) 被引量:35
标识
DOI:10.1103/physrevapplied.18.024022
摘要

Deep learning is found to be a powerful data-driven force to transform the way we discover, design, and utilize photonics and metasurfaces. More recently, there has been growing interest in deep-learning-enabled on-demand structural design, as it can ease the limitations of low efficiency, time-consuming, and experience navigation in conventional design. However, training data is a valuable source, especially for high-dimensional scatterers. It is extremely challenging and costly to keep the pace of data collection with the increasing degrees of freedom. Here, we propose a transfer-learning-assisted inverse-metasurface-design method to relieve the data dilemma. A flexible transferrable neural network composed of an encoder-decoder network and a physical assistance network is constructed, the latter of which is attached to solve the nonuniqueness problem. Starting from the 5 \ifmmode\times\else\texttimes\fi{} 5 metasurface, we successfully migrate the inverse design to a 20 \ifmmode\times\else\texttimes\fi{} 20 metasurface, with a Pearson correlation coefficient that reaches 97%. Compared with direct learning, the data requirement is reduced by over 30%. In the experiment, we validate the concept via wave-front customization. Our work constitutes a green and efficient inverse-design paradigm for fast far-field customization and provides a key advance for the next generation of large-scale intelligent metadevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
碧蓝莫言完成签到 ,获得积分10
刚刚
cfjbxf完成签到,获得积分10
1秒前
Nancy2023发布了新的文献求助10
2秒前
黄飚完成签到,获得积分10
2秒前
3秒前
尺子尺子和池子完成签到,获得积分10
3秒前
yeyeye发布了新的文献求助10
4秒前
斯文败类应助黄花采纳,获得10
4秒前
柯一一应助veggieg采纳,获得10
5秒前
5秒前
柯一一应助veggieg采纳,获得10
5秒前
丘比特应助DZ采纳,获得10
5秒前
5秒前
5秒前
6秒前
核桃应助欣喜靖采纳,获得10
7秒前
9秒前
9秒前
雪时晴完成签到,获得积分10
10秒前
10秒前
杨自强发布了新的文献求助10
10秒前
SYLH应助蓝色天空采纳,获得30
10秒前
11秒前
研友_rLmNXn发布了新的文献求助10
11秒前
郭小宝发布了新的文献求助10
12秒前
Hoshiiii发布了新的文献求助10
12秒前
Nancy2023完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
LW完成签到,获得积分10
14秒前
汉堡包应助研友_rLmNXn采纳,获得10
14秒前
Guochunbao发布了新的文献求助100
15秒前
weiwei发布了新的文献求助10
16秒前
DZ发布了新的文献求助10
16秒前
研友_VZG7GZ应助ODD采纳,获得10
16秒前
17秒前
18秒前
灵梦柠檬酸完成签到,获得积分10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226