计算机科学
计算机工程
深度学习
反向
钥匙(锁)
学习迁移
领域(数学)
人工智能
理论计算机科学
工业工程
数学
几何学
计算机安全
工程类
纯数学
作者
Zhixiang Fan,Chao Qian,Yuetian Jia,Min Chen,Jie Zhang,Xingshuo Cui,Er‐Ping Li,Bin Zheng,Tong Cai,Hongsheng Chen
出处
期刊:Physical review applied
[American Physical Society]
日期:2022-08-08
卷期号:18 (2)
被引量:19
标识
DOI:10.1103/physrevapplied.18.024022
摘要
Deep learning is found to be a powerful data-driven force to transform the way we discover, design, and utilize photonics and metasurfaces. More recently, there has been growing interest in deep-learning-enabled on-demand structural design, as it can ease the limitations of low efficiency, time-consuming, and experience navigation in conventional design. However, training data is a valuable source, especially for high-dimensional scatterers. It is extremely challenging and costly to keep the pace of data collection with the increasing degrees of freedom. Here, we propose a transfer-learning-assisted inverse-metasurface-design method to relieve the data dilemma. A flexible transferrable neural network composed of an encoder-decoder network and a physical assistance network is constructed, the latter of which is attached to solve the nonuniqueness problem. Starting from the 5 \ifmmode\times\else\texttimes\fi{} 5 metasurface, we successfully migrate the inverse design to a 20 \ifmmode\times\else\texttimes\fi{} 20 metasurface, with a Pearson correlation coefficient that reaches 97%. Compared with direct learning, the data requirement is reduced by over 30%. In the experiment, we validate the concept via wave-front customization. Our work constitutes a green and efficient inverse-design paradigm for fast far-field customization and provides a key advance for the next generation of large-scale intelligent metadevices.
科研通智能强力驱动
Strongly Powered by AbleSci AI