Transfer-Learning-Assisted Inverse Metasurface Design for 30% Data Savings

计算机科学 计算机工程 深度学习 反向 钥匙(锁) 学习迁移 领域(数学) 人工智能 理论计算机科学 工业工程 数学 几何学 计算机安全 纯数学 工程类
作者
Zhixiang Fan,Chao Qian,Yuetian Jia,Min Chen,Jie Zhang,Xingshuo Cui,Er‐Ping Li,Bin Zheng,Tong Cai,Hongsheng Chen
出处
期刊:Physical review applied [American Physical Society]
卷期号:18 (2) 被引量:19
标识
DOI:10.1103/physrevapplied.18.024022
摘要

Deep learning is found to be a powerful data-driven force to transform the way we discover, design, and utilize photonics and metasurfaces. More recently, there has been growing interest in deep-learning-enabled on-demand structural design, as it can ease the limitations of low efficiency, time-consuming, and experience navigation in conventional design. However, training data is a valuable source, especially for high-dimensional scatterers. It is extremely challenging and costly to keep the pace of data collection with the increasing degrees of freedom. Here, we propose a transfer-learning-assisted inverse-metasurface-design method to relieve the data dilemma. A flexible transferrable neural network composed of an encoder-decoder network and a physical assistance network is constructed, the latter of which is attached to solve the nonuniqueness problem. Starting from the 5 \ifmmode\times\else\texttimes\fi{} 5 metasurface, we successfully migrate the inverse design to a 20 \ifmmode\times\else\texttimes\fi{} 20 metasurface, with a Pearson correlation coefficient that reaches 97%. Compared with direct learning, the data requirement is reduced by over 30%. In the experiment, we validate the concept via wave-front customization. Our work constitutes a green and efficient inverse-design paradigm for fast far-field customization and provides a key advance for the next generation of large-scale intelligent metadevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助everyone_woo采纳,获得10
刚刚
1秒前
坚强的樱发布了新的文献求助10
2秒前
2秒前
chai发布了新的文献求助10
2秒前
Ava应助芋圆Z.采纳,获得10
2秒前
晶晶发布了新的文献求助10
2秒前
3秒前
3秒前
杉杉发布了新的文献求助10
3秒前
碧蓝梦容发布了新的文献求助10
7秒前
白白白发布了新的文献求助10
7秒前
8秒前
科研GO发布了新的文献求助10
8秒前
8秒前
亚胺培南西司他丁钠完成签到,获得积分10
9秒前
坚定汝燕完成签到 ,获得积分10
10秒前
杉杉完成签到,获得积分10
10秒前
Lucas应助吴彦祖采纳,获得10
11秒前
12秒前
许子健发布了新的文献求助10
14秒前
芋圆Z.完成签到,获得积分10
14秒前
张清璇完成签到,获得积分20
14秒前
Nov发布了新的文献求助10
14秒前
棉花糖完成签到,获得积分10
15秒前
xin发布了新的文献求助10
16秒前
自己顶一下关注了科研通微信公众号
17秒前
言之有李完成签到,获得积分10
17秒前
华仔应助66ds采纳,获得10
18秒前
小小康康发布了新的文献求助10
18秒前
碧蓝梦容完成签到,获得积分10
19秒前
彭于彦祖应助寡妇哥采纳,获得20
19秒前
22秒前
徐zihao完成签到,获得积分20
23秒前
24秒前
567完成签到,获得积分10
25秒前
25秒前
wen_xxx完成签到,获得积分20
25秒前
25秒前
FashionBoy应助星辰采纳,获得10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3692511
求助须知:如何正确求助?哪些是违规求助? 3243122
关于积分的说明 9843483
捐赠科研通 2955259
什么是DOI,文献DOI怎么找? 1620090
邀请新用户注册赠送积分活动 766312
科研通“疑难数据库(出版商)”最低求助积分说明 740139