Transfer-Learning-Assisted Inverse Metasurface Design for 30% Data Savings

计算机科学 计算机工程 深度学习 反向 钥匙(锁) 领域(数学) 个性化 人工智能 理论计算机科学 工业工程 数学 几何学 计算机安全 工程类 万维网 纯数学
作者
Zhixiang Fan,Chao Qian,Yuetian Jia,Min Chen,Jie Zhang,Xingshuo Cui,Er‐Ping Li,Bin Zheng,Tong Cai,Hongsheng Chen
出处
期刊:Physical review applied [American Physical Society]
卷期号:18 (2) 被引量:35
标识
DOI:10.1103/physrevapplied.18.024022
摘要

Deep learning is found to be a powerful data-driven force to transform the way we discover, design, and utilize photonics and metasurfaces. More recently, there has been growing interest in deep-learning-enabled on-demand structural design, as it can ease the limitations of low efficiency, time-consuming, and experience navigation in conventional design. However, training data is a valuable source, especially for high-dimensional scatterers. It is extremely challenging and costly to keep the pace of data collection with the increasing degrees of freedom. Here, we propose a transfer-learning-assisted inverse-metasurface-design method to relieve the data dilemma. A flexible transferrable neural network composed of an encoder-decoder network and a physical assistance network is constructed, the latter of which is attached to solve the nonuniqueness problem. Starting from the 5 \ifmmode\times\else\texttimes\fi{} 5 metasurface, we successfully migrate the inverse design to a 20 \ifmmode\times\else\texttimes\fi{} 20 metasurface, with a Pearson correlation coefficient that reaches 97%. Compared with direct learning, the data requirement is reduced by over 30%. In the experiment, we validate the concept via wave-front customization. Our work constitutes a green and efficient inverse-design paradigm for fast far-field customization and provides a key advance for the next generation of large-scale intelligent metadevices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang2完成签到,获得积分10
1秒前
beyond发布了新的文献求助10
1秒前
1秒前
Lucas应助Mystic采纳,获得10
2秒前
2秒前
浮游应助金博洋采纳,获得18
2秒前
2秒前
天天快乐应助哈哈王采纳,获得10
3秒前
3秒前
啦啦啦啦啦啦啦完成签到,获得积分10
3秒前
3秒前
呓语完成签到,获得积分10
4秒前
上官若男应助csy采纳,获得10
4秒前
可爱的雨柏完成签到,获得积分10
5秒前
蛙趣完成签到,获得积分10
5秒前
5秒前
果果完成签到,获得积分10
5秒前
yanwowo完成签到,获得积分10
5秒前
6秒前
星星完成签到,获得积分10
6秒前
6秒前
laojian完成签到 ,获得积分10
6秒前
李健应助深情傲柔采纳,获得10
7秒前
栓Q发布了新的文献求助10
7秒前
7秒前
CT民工发布了新的文献求助10
7秒前
mslln发布了新的文献求助10
7秒前
科研完成签到,获得积分20
8秒前
9秒前
PGZ完成签到,获得积分10
9秒前
醒醒完成签到,获得积分10
9秒前
赘婿应助ing采纳,获得10
10秒前
zhou完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
周晓发布了新的文献求助10
11秒前
beyond完成签到,获得积分10
12秒前
12秒前
做饭不咸完成签到,获得积分10
13秒前
无极微光应助木光采纳,获得20
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978