FBG Tactile Sensing System Based on GAF and CNN

计算机科学 人工智能 触觉传感器 计算机视觉 卷积神经网络 带宽(计算) 机器人 电信
作者
Chengang Lyu,Bo Yang,Xinyi Chang,Jiachen Tian,Yi Deng,Jie Jin
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (19): 18841-18849 被引量:4
标识
DOI:10.1109/jsen.2022.3193920
摘要

In recent years, tactile perception has attracted more and more attention as one of the important sensing technologies. Fiber Bragg grating (FBG) can be used as an advanced tactile sensing element based on the change of wavelength reflection spectrum under the tiny tactile force, which also has the characteristics of its small size and the fact that it is easy to be encapsulated in the industrial manipulator. This article proposes an object classification scheme for the FBG tactile sensing system based on the Gramian angular field (GAF) algorithm and convolutional neural network (CNN). Three identical FBGs are pasted on the surface of a flexible three-claw manipulator to obtain a three-channel tactile sensing signal, which is demodulated by the structure of wavelength-swept optical coherence tomography. In principle, any number of channels is applicable. The FBG tactile sensing signal belongs to 1-D small volume data, which transmits fast and occupies a small bandwidth. GAF maintains the correlations of time stamp during the process of encoding 1-D time series into 2-D images. CNN extracts deep features of data without a manual sign. Four typical CNN models are compared, which shows the feasibility of the proposed scheme. Finally, Resnet18 is chosen as the classifier of six types of object, and the accuracy of classification can reach 99.75% and the classification response time is only about 1.1 ms, which is suitable for application in any scenes, especially in smart industry with precious bandwidth, high accuracy, and low delay requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小敏完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
科研通AI2S应助Zhong采纳,获得10
2秒前
yidashi完成签到,获得积分10
2秒前
Kelvin.Tsi完成签到 ,获得积分10
2秒前
Island发布了新的文献求助10
3秒前
hu970发布了新的文献求助10
3秒前
九九发布了新的文献求助10
3秒前
123456完成签到,获得积分10
3秒前
BareBear应助龙妍琳采纳,获得10
3秒前
赘婿应助wary采纳,获得10
4秒前
小蘑菇应助wary采纳,获得10
4秒前
上官若男应助wary采纳,获得10
4秒前
李爱国应助木子采纳,获得10
4秒前
烟花应助马佳凯采纳,获得10
4秒前
4秒前
LYL完成签到,获得积分10
5秒前
5秒前
得意凡人完成签到,获得积分10
5秒前
5秒前
害怕的擎宇完成签到,获得积分10
6秒前
柳絮完成签到,获得积分20
6秒前
7秒前
赫连烙发布了新的文献求助10
7秒前
目遇给目遇的求助进行了留言
8秒前
Arnold发布了新的文献求助10
9秒前
在九月完成签到 ,获得积分10
9秒前
selfevidbet发布了新的文献求助30
9秒前
通~发布了新的文献求助10
9秒前
靓仔完成签到,获得积分10
9秒前
妙手回春板蓝根完成签到,获得积分10
9秒前
10秒前
11完成签到,获得积分10
11秒前
1111完成签到,获得积分10
11秒前
777完成签到,获得积分10
12秒前
junzilan发布了新的文献求助10
12秒前
12秒前
sun应助leave采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762