FBG Tactile Sensing System Based on GAF and CNN

计算机科学 人工智能 触觉传感器 计算机视觉 卷积神经网络 带宽(计算) 机器人 电信
作者
Chengang Lyu,Bo Yang,Xinyi Chang,Jiachen Tian,Yi Deng,Jie Jin
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (19): 18841-18849 被引量:16
标识
DOI:10.1109/jsen.2022.3193920
摘要

In recent years, tactile perception has attracted more and more attention as one of the important sensing technologies. Fiber Bragg grating (FBG) can be used as an advanced tactile sensing element based on the change of wavelength reflection spectrum under the tiny tactile force, which also has the characteristics of its small size and the fact that it is easy to be encapsulated in the industrial manipulator. This article proposes an object classification scheme for the FBG tactile sensing system based on the Gramian angular field (GAF) algorithm and convolutional neural network (CNN). Three identical FBGs are pasted on the surface of a flexible three-claw manipulator to obtain a three-channel tactile sensing signal, which is demodulated by the structure of wavelength-swept optical coherence tomography. In principle, any number of channels is applicable. The FBG tactile sensing signal belongs to 1-D small volume data, which transmits fast and occupies a small bandwidth. GAF maintains the correlations of time stamp during the process of encoding 1-D time series into 2-D images. CNN extracts deep features of data without a manual sign. Four typical CNN models are compared, which shows the feasibility of the proposed scheme. Finally, Resnet18 is chosen as the classifier of six types of object, and the accuracy of classification can reach 99.75% and the classification response time is only about 1.1 ms, which is suitable for application in any scenes, especially in smart industry with precious bandwidth, high accuracy, and low delay requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助顺心人达采纳,获得10
2秒前
霍焱发布了新的文献求助10
3秒前
科研通AI6.1应助Dr.c采纳,获得10
6秒前
碧蓝的安露完成签到 ,获得积分10
7秒前
hhhhxxxx完成签到,获得积分10
9秒前
11秒前
陈豆豆完成签到 ,获得积分10
12秒前
甜甜凉面完成签到,获得积分10
13秒前
懵懂的梦秋完成签到,获得积分10
13秒前
L_chen发布了新的文献求助10
14秒前
李爱国应助zl987采纳,获得10
16秒前
18秒前
Henry完成签到,获得积分10
18秒前
estrella完成签到 ,获得积分10
19秒前
句灼完成签到,获得积分10
20秒前
kevinqpp发布了新的文献求助10
22秒前
22秒前
L_chen完成签到,获得积分20
22秒前
27秒前
27秒前
28秒前
28秒前
28秒前
28秒前
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
Adc应助科研通管家采纳,获得10
28秒前
Ava应助科研通管家采纳,获得10
28秒前
Adc应助科研通管家采纳,获得10
28秒前
freebird应助科研通管家采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得30
28秒前
28秒前
马迦南完成签到 ,获得积分10
29秒前
kimiwanano完成签到,获得积分10
29秒前
盼盼完成签到,获得积分10
31秒前
Dr.c发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733153
求助须知:如何正确求助?哪些是违规求助? 5346222
关于积分的说明 15323096
捐赠科研通 4878315
什么是DOI,文献DOI怎么找? 2621157
邀请新用户注册赠送积分活动 1570280
关于科研通互助平台的介绍 1527163