计算机科学
生成语法
对比度(视觉)
人工智能
翻译(生物学)
对抗制
深度学习
模式识别(心理学)
磁共振成像
神经影像学
功能(生物学)
机器学习
心理学
神经科学
医学
放射科
信使核糖核酸
基因
生物
进化生物学
化学
生物化学
作者
Yunzhi Huang,Sahar Ahmad,Luyi Han,Shuai Wang,Zhengwang Wu,Weili Lin,Gang Li,Li Wang,Pew Thian Yap
出处
期刊:Cornell University - arXiv
日期:2022-08-09
标识
DOI:10.48550/arxiv.2208.04825
摘要
Missing scans are inevitable in longitudinal studies due to either subject dropouts or failed scans. In this paper, we propose a deep learning framework to predict missing scans from acquired scans, catering to longitudinal infant studies. Prediction of infant brain MRI is challenging owing to the rapid contrast and structural changes particularly during the first year of life. We introduce a trustworthy metamorphic generative adversarial network (MGAN) for translating infant brain MRI from one time-point to another. MGAN has three key features: (i) Image translation leveraging spatial and frequency information for detail-preserving mapping; (ii) Quality-guided learning strategy that focuses attention on challenging regions. (iii) Multi-scale hybrid loss function that improves translation of tissue contrast and structural details. Experimental results indicate that MGAN outperforms existing GANs by accurately predicting both contrast and anatomical details.
科研通智能强力驱动
Strongly Powered by AbleSci AI