Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N <sub>2</sub> activation issues on catalyst surface

催化作用 氨生产 化学 电化学 水溶液 电解质 路易斯酸 吸附 无机化学 质子化 极化(电化学)
作者
Ashmita Biswas,Samadhan Kapse,Bikram Ghosh,Ranjit Thapa,Ramendra Sundar Dey
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (33)
标识
DOI:10.1073/pnas.2204638119
摘要

The growing demands for ammonia in agriculture and transportation fuel stimulate researchers to develop sustainable electrochemical methods to synthesize ammonia ambiently, to get past the energy-intensive Haber-Bosch process. However, the conventionally used aqueous electrolytes limit N 2 solubility, leading to insufficient reactant molecules in the vicinity of the catalyst during electrochemical nitrogen reduction reaction (NRR). This hampers the yield and production rate of ammonia, irrespective of how efficient the catalyst is. Herein, we introduce an aqueous electrolyte (NaBF 4 ), which not only acts as an N 2 -carrier in the medium but also works as a full-fledged “co-catalyst” along with our active material MnN 4 to deliver a high yield of NH 3 (328.59 μg h −1 mg cat −1 ) at 0.0 V versus reversible hydrogen electrode. BF 3 -induced charge polarization shifts the metal d-band center of the MnN 4 unit close to the Fermi level, inviting N 2 adsorption facilely. The Lewis acidity of the free BF 3 molecules further propagates their importance in polarizing the N≡N bond of the adsorbed N 2 and its first protonation. This push-pull kind of electronic interaction has been confirmed from the change in d-band center values of the MnN 4 site as well as charge density distribution over our active model units, which turned out to be effective enough to lower the energy barrier of the potential determining steps of NRR. Consequently, a high production rate of NH 3 (2.45 × 10 −9 mol s −1 cm −2 ) was achieved, approaching the industrial scale where the source of NH 3 was thoroughly studied and confirmed to be chiefly from the electrochemical reduction of the purged N 2 gas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwayou完成签到,获得积分10
1秒前
林天完成签到,获得积分10
1秒前
1秒前
1秒前
小姜超级棒完成签到,获得积分10
1秒前
2秒前
2秒前
smottom应助你好采纳,获得10
2秒前
2秒前
2秒前
实验顺利应助有魅力惜海采纳,获得20
3秒前
halona驳回了烟花应助
4秒前
28551发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
赘婿应助呈安一丁采纳,获得50
5秒前
香蕉觅云应助李时珍采纳,获得10
5秒前
6秒前
Clark发布了新的文献求助10
6秒前
完美世界应助小鹿乱撞采纳,获得10
6秒前
一颗葡萄完成签到,获得积分10
6秒前
guozizi发布了新的文献求助10
6秒前
6秒前
sci小神童发布了新的文献求助10
7秒前
Persepolis完成签到,获得积分10
7秒前
你在烦恼什么完成签到 ,获得积分10
7秒前
戴小芳完成签到,获得积分10
7秒前
星空孤独完成签到,获得积分10
7秒前
惠惠发布了新的文献求助10
7秒前
PEIfq发布了新的文献求助10
8秒前
Lucas应助张英歌采纳,获得10
8秒前
8秒前
9秒前
徐行完成签到,获得积分10
9秒前
11111完成签到 ,获得积分20
9秒前
Schwarz完成签到,获得积分10
9秒前
9秒前
江上酒完成签到,获得积分10
10秒前
852应助棋士采纳,获得10
10秒前
28551完成签到,获得积分10
10秒前
silvia关注了科研通微信公众号
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274