脑电图
癫痫
分类
鉴定(生物学)
人工智能
计算机科学
头皮
等级间信度
特征选择
模式识别(心理学)
神经科学
心理学
医学
发展心理学
生物
外科
评定量表
植物
作者
Derek K. Hu,Marco Antonio Pinto-Orellana,Mandeep Rana,Luat Do,David J. Adams,Shaun A. Hussain,Daniel W. Shrey,Beth A. Lopour
摘要
The discovery and validation of electroencephalography (EEG) biomarkers often rely on visual identification of waveforms. However, bias toward visually striking events restricts the search space for new biomarkers, and low interrater reliability can limit rigorous validation. We present a data-driven approach to biomarker discovery called scalp EEG Pattern Identification and Categorization (s-EPIC), which enables automated, unsupervised identification of EEG waveforms. S-EPIC is validated on Lennox-Gastaut syndrome (LGS), an epilepsy that is difficult to diagnose and assess due to its variable presentation and insidious evolution of symptoms.
科研通智能强力驱动
Strongly Powered by AbleSci AI