Atomic Gap-State Engineering of MoS2 for Alkaline Water and Seawater Splitting

分解水 掺杂剂 材料科学 过渡金属 二硫化钼 塔菲尔方程 杂原子 纳米技术 化学物理 兴奋剂 交换电流密度 费米能级 海水 无机化学 催化作用 化学 电化学 物理化学 光电子学 冶金 物理 海洋学 生物化学 光催化 地质学 量子力学 电子 戒指(化学) 有机化学 电极
作者
Tao Sun,Tong Yang,Wenjie Zang,Jing Li,Xiaoyu Sheng,Enzhou Liu,Jiali Li,Xiao Hai,Huihui Lin,Cheng‐Hao Chuang,Chenliang Su,Maohong Fan,Ming Yang,Ming Lin,Shibo Xi,Ruqiang Zou,Jiong Lu
出处
期刊:ACS Nano [American Chemical Society]
被引量:3
标识
DOI:10.1021/acsnano.4c13736
摘要

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy–heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment. Here, we report a gap-state engineering strategy for the controlled activation of S atom in MoS2 basal planes through metal single-atom doping, effectively tackling both efficiency and stability challenges in alkaline water and seawater splitting. A versatile synthetic methodology allows for the fabrication of a series of single-metal atom-doped MoS2 materials (M1/MoS2), featuring widely tunable densities with each dopant replacing a Mo site. Among these (Mn1, Fe1, Co1, and Ni1), Co1/MoS2 demonstrates outstanding HER performance in both alkaline and seawater alkaline media, with overpotentials at a mere 159 and 164 mV at 100 mA cm–2, and Tafel slopes at 41 and 45 mV dec–1, respectively, which surpasses all reported TMD-based nonprecious materials and benchmark Pt/C catalysts in HER efficiency and stability during seawater splitting, which can be attributed to an optimal gap-state modulation associated with sulfur atoms. Experimental data correlating doping density and dopant identity with HER performance, in conjunction with theoretical calculations, also reveal a descriptor linked to near-Fermi gap state modulation, corroborated by the observed increase in unoccupied S 3p states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助陈世岗采纳,获得10
1秒前
Akim应助不当脆脆鲨采纳,获得10
1秒前
SYLH应助李蹦跶采纳,获得10
1秒前
小白应助南南采纳,获得10
2秒前
monster发布了新的文献求助10
2秒前
2秒前
2秒前
杞人忧天完成签到,获得积分10
3秒前
sun完成签到 ,获得积分10
3秒前
糊涂涂完成签到,获得积分10
3秒前
星辰大海应助yin采纳,获得10
3秒前
共享精神应助zxr采纳,获得10
3秒前
aabbccwy完成签到,获得积分10
3秒前
4秒前
4秒前
小曲发布了新的文献求助10
5秒前
liulongchao完成签到,获得积分10
6秒前
6秒前
6秒前
默许完成签到,获得积分10
6秒前
7秒前
7秒前
薇薇辣完成签到 ,获得积分10
8秒前
懵懂的白猫完成签到,获得积分10
8秒前
liulongchao发布了新的文献求助10
8秒前
cdercder应助XT666采纳,获得100
8秒前
nana完成签到 ,获得积分10
9秒前
9秒前
9秒前
Alien发布了新的文献求助10
9秒前
伊利亚发布了新的文献求助10
10秒前
晚风发布了新的文献求助10
10秒前
August发布了新的文献求助10
10秒前
清秀凡阳发布了新的文献求助10
11秒前
LIGANG1111完成签到 ,获得积分10
11秒前
鬼笔环肽应助元谷雪采纳,获得10
11秒前
科研助手6应助xiao123789采纳,获得10
11秒前
hexingyue发布了新的文献求助10
12秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767607
求助须知:如何正确求助?哪些是违规求助? 3312246
关于积分的说明 10162904
捐赠科研通 3027595
什么是DOI,文献DOI怎么找? 1661595
邀请新用户注册赠送积分活动 794164
科研通“疑难数据库(出版商)”最低求助积分说明 756002