材料科学
阴极
电化学
背景(考古学)
扩散
离子
锂(药物)
电池(电)
锂离子电池
氧化物
化学工程
电压
纳米技术
电极
物理化学
热力学
电气工程
冶金
化学
内分泌学
工程类
古生物学
功率(物理)
有机化学
物理
生物
医学
作者
Yali Yang,Tie Luo,Yuxuan Zuo,Hangchao Wang,Chuan Gao,Junfei Cai,Tonghuan Yang,Wukun Xiao,Yue Yu,Dingguo Xia
标识
DOI:10.1002/adma.202414786
摘要
Abstract Li‐rich Mn‐based cathode materials exhibit a remarkable reversible specific capacity exceeding 250 mAh g −1 , positioning them as the preferred choice for the next generation of high‐energy density lithium‐ion battery cathode materials. However, their inferior rate and cycling performance pose significant challenges. In this context, a Li‐rich material incorporating an expanded fast Li‐ion diffusion network has been successfully synthesized. This advancement involves the introduction of a single‐layer of LiCo(Ni)O 2 with high Li‐ion diffusion coefficients into the crystal structure of Li‐rich cathode, thereby enhancing the rate performance, achieving an impressive capacity of 212 mAh g −1 at 5 C. Furthermore, the single‐layer LiCo(Ni)O 2 can effectively isolates Li 2 MnO 3 phase domains, thereby enhancing the structural stability during the anion redox process, consequently extending the electrochemical stability limits. Operating within a voltage range of 2.1–4.6 V, the capacity retention reaches 80% after 400 cycles, with a voltage decay of merely 0.74 mV per cycle. This innovative utilization of an expanded fast Li‐ion diffusion network provides invaluable insights that will guide the development of strategies aimed at unlocking rate capability in layered oxide cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI